We will throw away the data anyhow, but some apps depend on the callback
firing to make progress; testmultiaudio.c, if nothing else, is an example
of this.
Capture also will now fire the callback in these conditions, offering nothing
but silence.
Apps can check SDL_GetAudioDeviceStatus() or listen for the
SDL_AUDIODEVICEREMOVED event if they want to gracefully deal with
an opened audio device that has been unexpectedly lost.
This should remain binary compatible with Windows XP, as we dynamically
load anything we need and fall back to DirectSound/WinMM/XAudio2 if not
available.
Walter van Niftrik
We have found that since SDL 2.0.5 the audio callback thread is created with a very small stack size. In our application this is leading to stack overflows.
We believe there is a bug at http://hg.libsdl.org/SDL/file/391fd532f79e/src/audio/SDL_audio.c#l1132, where the is_internal_thread flag appears to be inverted.
This defaults to the internal SDL resampler, since that's the likely default
without a system-wide install of libsamplerate, but those that need more can
tweak this.
There was a draft of this where it did audio conversion into the final buffer,
if there was enough room available past what you asked for, but that interface
got removed, so the parameters didn't make sense (and we were using the
wrong one in any case, too!).
This tends to be a frequent spot where drivers hang, and the waits were
often unreliable in any case.
Instead, our audio thread now alerts the driver that we're done streaming audio
(which currently XAudio2 uses to alert the system not to warn about the
impending underflow) and then SDL_Delay()'s for a duration that's reasonable
to drain the DMA buffers before closing the device.
This tries to make SDL robust against device drivers that have hung up,
apps don't freeze in catastrophic (but not necessarily uncommon) conditions.
Now we detach the audio thread and let it clean up and don't care if it
never actually runs to completion.
James Zipperer
The problem I was seeing was that the the ALSA hotplug thread would call SDL_RemoveAudioDevice, but my application code was not seeing an SDL_AUDIODEVICEREMOVED event to go along with it. To fix it, I added some code into SDL_RemoveAudioDevice to call SDL_OpenedAudioDeviceDisconnected on the corresponding open audio device. There didn't appear to be a way to cross reference the handle that SDL_RemoveAudioDevice gets and the SDL_AudioDevice pointer that SDL_OpenedAudioDeviceDisconnected needs, so I ended up adding a void *handle field to struct SDL_AudioDevice so that I could do the cross reference.
Is there some other way beside adding a void *handle field to the struct to get the proper information for SDL_OpenedAudioDeviceDisconnected?
James Zipperer
Close the audio device before waiting for the audio thread to complete, which fixes a situation where the audio thread never completes
Add an additional check in the audio thread to see if the device is enabled and bail out if the device is no longer enabled
Otherwise, if you had a massive, one-time queue buildup, the memory from that
remains allocated until you close the device. Also, if you are just using a
reasonable amount of space, this would previously cause you to reallocate it
over and over instead of keeping a little bit of memory around.
I think this was important for SDL 1.2 because some targets needed
special device memory for DMA buffers or locked memory buffers for use in
hardware interrupts or something, but since it just defines to SDL_malloc
and SDL_free now, I took it out for clarity's sake.
- It's now always called if device->hidden isn't NULL, even if OpenDevice()
failed halfway through. This lets implementation code not have to clean up
itself on every possible failure point; just return an error and SDL will
handle it for you.
- Implementations can assume this->hidden != NULL and not check for it.
- implementations don't have to set this->hidden = NULL when done, because
the caller is always about to free(this).
- Don't reset other fields that are in a block of memory about to be free()'d.
- Implementations all now free things like internal mix buffers last, after
closing devices and such, to guarantee they definitely aren't in use anymore
at the point of deallocation.