pmlpp/mlpp/lin_alg/mlpp_vector.h

309 lines
9.2 KiB
C
Raw Normal View History

#ifndef MLPP_VECTOR_H
#define MLPP_VECTOR_H
#ifndef GDNATIVE
2023-12-30 00:41:59 +01:00
/*************************************************************************/
/* mlpp_vector.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
2023-12-30 00:43:39 +01:00
/* Copyright (c) 2023-present Péter Magyar. */
2023-12-30 00:41:59 +01:00
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-01-29 15:46:55 +01:00
#include "core/math/math_funcs.h"
2023-01-27 13:01:16 +01:00
#include "core/containers/pool_vector.h"
#include "core/containers/sort_array.h"
#include "core/containers/vector.h"
#include "core/error/error_macros.h"
#include "core/os/memory.h"
#include "core/object/resource.h"
#else
#include "core/containers/vector.h"
#include "core/defs.h"
#include "core/math_funcs.h"
#include "core/os/memory.h"
#include "core/pool_arrays.h"
#include "gen/resource.h"
#endif
//REMOVE
#include <vector>
class MLPPMatrix;
class MLPPVector : public Resource {
GDCLASS(MLPPVector, Resource);
public:
PoolRealArray get_data();
void set_data(const PoolRealArray &p_from);
2023-04-25 18:04:34 +02:00
_FORCE_INLINE_ real_t *ptrw() {
return _data;
}
2023-04-25 18:04:34 +02:00
_FORCE_INLINE_ const real_t *ptr() const {
return _data;
}
void push_back(real_t p_elem);
2023-04-29 14:37:58 +02:00
void append_mlpp_vector(const Ref<MLPPVector> &p_other);
void remove(int p_index);
// Removes the item copying the last value into the position of the one to
// remove. It's generally faster than `remove`.
void remove_unordered(int p_index);
void erase(const real_t &p_val);
int erase_multiple_unordered(const real_t &p_val);
void invert();
_FORCE_INLINE_ void clear() { resize(0); }
_FORCE_INLINE_ void reset() {
if (_data) {
memfree(_data);
_data = NULL;
_size = 0;
}
}
_FORCE_INLINE_ bool empty() const { return _size == 0; }
_FORCE_INLINE_ int size() const { return _size; }
void resize(int p_size);
2023-01-27 13:01:16 +01:00
_FORCE_INLINE_ const real_t &operator[](int p_index) const {
CRASH_BAD_INDEX(p_index, _size);
return _data[p_index];
}
2023-01-27 13:01:16 +01:00
_FORCE_INLINE_ real_t &operator[](int p_index) {
CRASH_BAD_INDEX(p_index, _size);
return _data[p_index];
}
_FORCE_INLINE_ real_t element_get(int p_index) const {
ERR_FAIL_INDEX_V(p_index, _size, 0);
return _data[p_index];
}
_FORCE_INLINE_ void element_set(int p_index, real_t p_val) {
ERR_FAIL_INDEX(p_index, _size);
_data[p_index] = p_val;
}
_FORCE_INLINE_ const real_t &element_get_ref(int p_index) const {
CRASH_BAD_INDEX(p_index, _size);
return _data[p_index];
}
_FORCE_INLINE_ real_t &element_get_ref(int p_index) {
CRASH_BAD_INDEX(p_index, _size);
return _data[p_index];
}
void fill(real_t p_val);
void insert(int p_pos, real_t p_val);
int find(const real_t &p_val, int p_from = 0) const;
template <class C>
void sort_custom() {
int len = _size;
if (len == 0) {
return;
}
2023-01-27 13:01:16 +01:00
SortArray<real_t, C> sorter;
sorter.sort(_data, len);
}
void sort() {
2023-01-27 13:01:16 +01:00
sort_custom<_DefaultComparator<real_t>>();
}
void ordered_insert(real_t p_val);
2023-01-29 15:46:55 +01:00
Vector<real_t> to_vector() const;
PoolRealArray to_pool_vector() const;
Vector<uint8_t> to_byte_array() const;
2023-01-29 15:46:55 +01:00
Ref<MLPPVector> duplicate_fast() const;
2023-01-29 15:46:55 +01:00
void set_from_mlpp_vectorr(const MLPPVector &p_from);
void set_from_mlpp_vector(const Ref<MLPPVector> &p_from);
void set_from_vector(const Vector<real_t> &p_from);
void set_from_pool_vector(const PoolRealArray &p_from);
2023-01-29 15:46:55 +01:00
bool is_equal_approx(const Ref<MLPPVector> &p_with, real_t tolerance = static_cast<real_t>(CMP_EPSILON)) const;
2023-01-29 15:46:55 +01:00
void flatten_vectors(const Vector<Ref<MLPPVector>> &A);
Ref<MLPPVector> flatten_vectorsn(const Vector<Ref<MLPPVector>> &A) const;
void hadamard_product(const Ref<MLPPVector> &b);
Ref<MLPPVector> hadamard_productn(const Ref<MLPPVector> &b) const;
void hadamard_productb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
2023-04-29 13:50:35 +02:00
void division_element_wise(const Ref<MLPPVector> &b);
Ref<MLPPVector> division_element_wisen(const Ref<MLPPVector> &b) const;
void division_element_wiseb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void scalar_multiply(real_t scalar);
Ref<MLPPVector> scalar_multiplyn(real_t scalar) const;
void scalar_multiplyb(real_t scalar, const Ref<MLPPVector> &a);
void scalar_add(real_t scalar);
Ref<MLPPVector> scalar_addn(real_t scalar) const;
void scalar_addb(real_t scalar, const Ref<MLPPVector> &a);
void add(const Ref<MLPPVector> &b);
Ref<MLPPVector> addn(const Ref<MLPPVector> &b) const;
void addb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void sub(const Ref<MLPPVector> &b);
Ref<MLPPVector> subn(const Ref<MLPPVector> &b) const;
void subb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
2023-04-24 17:31:35 +02:00
void log();
Ref<MLPPVector> logn() const;
2023-04-24 17:31:35 +02:00
void logb(const Ref<MLPPVector> &a);
void log10();
Ref<MLPPVector> log10n() const;
2023-04-24 17:31:35 +02:00
void log10b(const Ref<MLPPVector> &a);
void exp();
Ref<MLPPVector> expn() const;
2023-04-24 17:31:35 +02:00
void expb(const Ref<MLPPVector> &a);
void erf();
Ref<MLPPVector> erfn() const;
2023-04-24 17:31:35 +02:00
void erfb(const Ref<MLPPVector> &a);
void exponentiate(real_t p);
Ref<MLPPVector> exponentiaten(real_t p) const;
2023-04-24 17:31:35 +02:00
void exponentiateb(const Ref<MLPPVector> &a, real_t p);
void sqrt();
Ref<MLPPVector> sqrtn() const;
2023-04-24 17:31:35 +02:00
void sqrtb(const Ref<MLPPVector> &a);
void cbrt();
Ref<MLPPVector> cbrtn() const;
2023-04-24 17:31:35 +02:00
void cbrtb(const Ref<MLPPVector> &a);
real_t dot(const Ref<MLPPVector> &b) const;
2023-12-29 18:36:51 +01:00
Ref<MLPPVector> cross(const Ref<MLPPVector> &b);
2023-04-24 17:57:22 +02:00
void abs();
Ref<MLPPVector> absn() const;
2023-04-24 17:57:22 +02:00
void absb(const Ref<MLPPVector> &a);
2023-04-29 14:37:58 +02:00
Ref<MLPPVector> vecn_zero(int n) const;
Ref<MLPPVector> vecn_one(int n) const;
Ref<MLPPVector> vecn_full(int n, int k) const;
static Ref<MLPPVector> create_vec_zero(int n);
static Ref<MLPPVector> create_vec_one(int n);
static Ref<MLPPVector> create_vec_full(int n, int k);
2023-04-24 17:57:22 +02:00
void sin();
Ref<MLPPVector> sinn() const;
2023-04-24 17:57:22 +02:00
void sinb(const Ref<MLPPVector> &a);
2023-04-24 17:57:22 +02:00
void cos();
Ref<MLPPVector> cosn() const;
2023-04-24 17:57:22 +02:00
void cosb(const Ref<MLPPVector> &a);
void max(const Ref<MLPPVector> &b);
Ref<MLPPVector> maxn(const Ref<MLPPVector> &b) const;
void maxb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
void min(const Ref<MLPPVector> &b);
Ref<MLPPVector> minn(const Ref<MLPPVector> &b) const;
void minb(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
2023-04-24 17:57:22 +02:00
real_t max_element() const;
int max_element_index() const;
real_t min_element() const;
int min_element_index() const;
//std::vector<real_t> round(std::vector<real_t> a);
real_t euclidean_distance(const Ref<MLPPVector> &b) const;
real_t euclidean_distance_squared(const Ref<MLPPVector> &b) const;
2023-12-28 23:26:14 +01:00
real_t norm_2() const;
real_t norm_sq() const;
real_t sum_elements() const;
//real_t cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b);
2023-04-24 18:11:22 +02:00
void subtract_matrix_rows(const Ref<MLPPMatrix> &B);
Ref<MLPPVector> subtract_matrix_rowsn(const Ref<MLPPMatrix> &B) const;
2023-04-24 18:11:22 +02:00
void subtract_matrix_rowsb(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B);
// This multiplies a, bT
Ref<MLPPMatrix> outer_product(const Ref<MLPPVector> &b) const;
// as_diagonal_matrix / to_diagonal_matrix
Ref<MLPPMatrix> diagnm() const;
String to_string();
MLPPVector();
MLPPVector(const MLPPVector &p_from);
MLPPVector(const Vector<real_t> &p_from);
MLPPVector(const PoolRealArray &p_from);
MLPPVector(const real_t *p_from, const int p_size);
~MLPPVector();
// TODO: These are temporary
std::vector<real_t> to_std_vector() const;
void set_from_std_vector(const std::vector<real_t> &p_from);
MLPPVector(const std::vector<real_t> &p_from);
protected:
static void _bind_methods();
protected:
int _size;
2023-01-27 13:01:16 +01:00
real_t *_data;
};
#endif