pmlpp/mlpp/hidden_layer/hidden_layer.cpp

294 lines
8.8 KiB
C++
Raw Normal View History

//
// HiddenLayer.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "hidden_layer.h"
#include "../activation/activation.h"
#include "../lin_alg/lin_alg.h"
#include <iostream>
#include <random>
2023-02-06 02:36:22 +01:00
int MLPPHiddenLayer::get_n_hidden() const {
return n_hidden;
}
void MLPPHiddenLayer::set_n_hidden(const int val) {
n_hidden = val;
_initialized = false;
}
2023-02-06 02:36:22 +01:00
MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const {
return activation;
}
void MLPPHiddenLayer::set_activation(const MLPPActivation::ActivationFunction val) {
activation = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPHiddenLayer::get_input() {
return input;
}
void MLPPHiddenLayer::set_input(const Ref<MLPPMatrix> &val) {
input = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPHiddenLayer::get_weights() {
return weights;
}
void MLPPHiddenLayer::set_weights(const Ref<MLPPMatrix> &val) {
weights = val;
_initialized = false;
}
Ref<MLPPVector> MLPPHiddenLayer::MLPPHiddenLayer::get_bias() {
return bias;
}
void MLPPHiddenLayer::set_bias(const Ref<MLPPVector> &val) {
bias = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPHiddenLayer::get_z() {
return z;
}
void MLPPHiddenLayer::set_z(const Ref<MLPPMatrix> &val) {
z = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPHiddenLayer::get_a() {
return a;
}
void MLPPHiddenLayer::set_a(const Ref<MLPPMatrix> &val) {
a = val;
_initialized = false;
}
Ref<MLPPVector> MLPPHiddenLayer::get_z_test() {
return z_test;
}
void MLPPHiddenLayer::set_z_test(const Ref<MLPPVector> &val) {
z_test = val;
_initialized = false;
}
Ref<MLPPVector> MLPPHiddenLayer::get_a_test() {
return a_test;
}
void MLPPHiddenLayer::set_a_test(const Ref<MLPPVector> &val) {
a_test = val;
_initialized = false;
}
Ref<MLPPMatrix> MLPPHiddenLayer::get_delta() {
return delta;
}
void MLPPHiddenLayer::set_delta(const Ref<MLPPMatrix> &val) {
delta = val;
_initialized = false;
}
2023-02-06 02:36:22 +01:00
MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const {
return reg;
}
void MLPPHiddenLayer::set_reg(const MLPPReg::RegularizationType val) {
reg = val;
_initialized = false;
}
2023-02-06 02:36:22 +01:00
real_t MLPPHiddenLayer::get_lambda() const {
return lambda;
}
void MLPPHiddenLayer::set_lambda(const real_t val) {
lambda = val;
_initialized = false;
}
2023-02-06 02:36:22 +01:00
real_t MLPPHiddenLayer::get_alpha() const {
return alpha;
}
void MLPPHiddenLayer::set_alpha(const real_t val) {
alpha = val;
_initialized = false;
}
2023-02-06 02:36:22 +01:00
MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const {
return weight_init;
}
void MLPPHiddenLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
weight_init = val;
_initialized = false;
}
bool MLPPHiddenLayer::is_initialized() {
return _initialized;
}
void MLPPHiddenLayer::initialize() {
if (_initialized) {
return;
}
weights->resize(Size2i(n_hidden, input->size().x));
bias->resize(n_hidden);
MLPPUtilities utils;
utils.weight_initializationm(weights, weight_init);
utils.bias_initializationv(bias);
_initialized = true;
}
2023-01-31 01:22:13 +01:00
void MLPPHiddenLayer::forward_pass() {
if (!_initialized) {
initialize();
}
2023-01-31 01:22:13 +01:00
MLPPLinAlg alg;
MLPPActivation avn;
z = alg.mat_vec_addv(alg.matmultm(input, weights), bias);
a = avn.run_activation_norm_matrix(activation, z);
2023-01-31 01:22:13 +01:00
}
void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
if (!_initialized) {
initialize();
}
2023-01-31 01:22:13 +01:00
MLPPLinAlg alg;
MLPPActivation avn;
z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(weights), x), bias);
a_test = avn.run_activation_norm_matrix(activation, z_test);
}
2023-01-31 01:22:13 +01:00
MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
n_hidden = p_n_hidden;
activation = p_activation;
2023-01-31 01:22:13 +01:00
input = p_input;
2023-01-31 01:22:13 +01:00
// Regularization Params
reg = p_reg;
lambda = p_lambda; /* Regularization Parameter */
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
2023-01-31 01:22:13 +01:00
weight_init = p_weight_init;
2023-01-31 01:22:13 +01:00
z.instance();
a.instance();
2023-01-31 01:22:13 +01:00
z_test.instance();
a_test.instance();
2023-01-31 01:22:13 +01:00
delta.instance();
2023-01-31 01:22:13 +01:00
weights.instance();
bias.instance();
2023-01-31 01:22:13 +01:00
weights->resize(Size2i(n_hidden, input->size().x));
bias->resize(n_hidden);
2023-01-31 01:22:13 +01:00
2023-02-04 01:18:50 +01:00
MLPPUtilities utils;
utils.weight_initializationm(weights, weight_init);
utils.bias_initializationv(bias);
_initialized = true;
}
2023-01-31 01:22:13 +01:00
MLPPHiddenLayer::MLPPHiddenLayer() {
n_hidden = 0;
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
2023-01-31 01:22:13 +01:00
// Regularization Params
//reg = 0;
lambda = 0; /* Regularization Parameter */
alpha = 0; /* This is the controlling param for Elastic Net*/
2023-01-31 01:22:13 +01:00
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
2023-01-31 01:22:13 +01:00
z.instance();
a.instance();
2023-01-31 01:22:13 +01:00
z_test.instance();
a_test.instance();
2023-01-31 01:22:13 +01:00
delta.instance();
2023-01-31 01:22:13 +01:00
weights.instance();
bias.instance();
_initialized = false;
}
MLPPHiddenLayer::~MLPPHiddenLayer() {
2023-01-31 01:22:13 +01:00
}
2023-01-24 19:20:18 +01:00
void MLPPHiddenLayer::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPHiddenLayer::get_n_hidden);
ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPHiddenLayer::set_n_hidden);
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden");
ClassDB::bind_method(D_METHOD("get_activation"), &MLPPHiddenLayer::get_activation);
ClassDB::bind_method(D_METHOD("set_activation", "val"), &MLPPHiddenLayer::set_activation);
ADD_PROPERTY(PropertyInfo(Variant::INT, "activation"), "set_activation", "get_activation");
ClassDB::bind_method(D_METHOD("get_input"), &MLPPHiddenLayer::get_input);
ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPHiddenLayer::set_input);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input");
ClassDB::bind_method(D_METHOD("get_weights"), &MLPPHiddenLayer::get_weights);
ClassDB::bind_method(D_METHOD("set_weights", "val"), &MLPPHiddenLayer::set_weights);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_weights", "get_weights");
ClassDB::bind_method(D_METHOD("get_bias"), &MLPPHiddenLayer::get_bias);
ClassDB::bind_method(D_METHOD("set_bias", "val"), &MLPPHiddenLayer::set_bias);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "bias", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_bias", "get_bias");
ClassDB::bind_method(D_METHOD("get_z"), &MLPPHiddenLayer::get_z);
ClassDB::bind_method(D_METHOD("set_z", "val"), &MLPPHiddenLayer::set_z);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_z", "get_z");
ClassDB::bind_method(D_METHOD("get_a"), &MLPPHiddenLayer::get_a);
ClassDB::bind_method(D_METHOD("set_a", "val"), &MLPPHiddenLayer::set_a);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_a", "get_a");
ClassDB::bind_method(D_METHOD("get_z_test"), &MLPPHiddenLayer::get_z_test);
ClassDB::bind_method(D_METHOD("set_z_test", "val"), &MLPPHiddenLayer::set_z_test);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z_test", "get_z_test");
ClassDB::bind_method(D_METHOD("get_a_test"), &MLPPHiddenLayer::get_a_test);
ClassDB::bind_method(D_METHOD("set_a_test", "val"), &MLPPHiddenLayer::set_a_test);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a_test", "get_a_test");
ClassDB::bind_method(D_METHOD("get_delta"), &MLPPHiddenLayer::get_delta);
ClassDB::bind_method(D_METHOD("set_delta", "val"), &MLPPHiddenLayer::set_delta);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "delta", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_delta", "get_delta");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPHiddenLayer::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPHiddenLayer::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPHiddenLayer::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPHiddenLayer::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPHiddenLayer::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPHiddenLayer::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("get_weight_init"), &MLPPHiddenLayer::get_weight_init);
ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPHiddenLayer::set_weight_init);
ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init");
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPHiddenLayer::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPHiddenLayer::initialize);
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPHiddenLayer::forward_pass);
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPHiddenLayer::test);
}