mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-02-01 17:07:02 +01:00
Properly initialize the hidden and output layers.
This commit is contained in:
parent
879464fe0d
commit
f9b998d5d0
@ -16,6 +16,7 @@ int MLPPHiddenLayer::get_n_hidden() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const {
|
||||
@ -23,6 +24,7 @@ MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
||||
activation = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_input() {
|
||||
@ -30,6 +32,7 @@ Ref<MLPPMatrix> MLPPHiddenLayer::get_input() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_input(const Ref<MLPPMatrix> &val) {
|
||||
input = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_weights() {
|
||||
@ -37,6 +40,7 @@ Ref<MLPPMatrix> MLPPHiddenLayer::get_weights() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_weights(const Ref<MLPPMatrix> &val) {
|
||||
weights = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::MLPPHiddenLayer::get_bias() {
|
||||
@ -44,6 +48,7 @@ Ref<MLPPVector> MLPPHiddenLayer::MLPPHiddenLayer::get_bias() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_bias(const Ref<MLPPVector> &val) {
|
||||
bias = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_z() {
|
||||
@ -51,6 +56,7 @@ Ref<MLPPMatrix> MLPPHiddenLayer::get_z() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_z(const Ref<MLPPMatrix> &val) {
|
||||
z = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_a() {
|
||||
@ -58,6 +64,7 @@ Ref<MLPPMatrix> MLPPHiddenLayer::get_a() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_a(const Ref<MLPPMatrix> &val) {
|
||||
a = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::get_z_test() {
|
||||
@ -65,6 +72,7 @@ Ref<MLPPVector> MLPPHiddenLayer::get_z_test() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_z_test(const Ref<MLPPVector> &val) {
|
||||
z_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::get_a_test() {
|
||||
@ -72,6 +80,7 @@ Ref<MLPPVector> MLPPHiddenLayer::get_a_test() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_a_test(const Ref<MLPPVector> &val) {
|
||||
a_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_delta() {
|
||||
@ -79,6 +88,7 @@ Ref<MLPPMatrix> MLPPHiddenLayer::get_delta() {
|
||||
}
|
||||
void MLPPHiddenLayer::set_delta(const Ref<MLPPMatrix> &val) {
|
||||
delta = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const {
|
||||
@ -86,6 +96,7 @@ MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_reg(const MLPPReg::RegularizationType val) {
|
||||
reg = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPHiddenLayer::get_lambda() const {
|
||||
@ -93,6 +104,7 @@ real_t MLPPHiddenLayer::get_lambda() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPHiddenLayer::get_alpha() const {
|
||||
@ -100,6 +112,7 @@ real_t MLPPHiddenLayer::get_alpha() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const {
|
||||
@ -107,9 +120,33 @@ MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const {
|
||||
}
|
||||
void MLPPHiddenLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
||||
weight_init = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
bool MLPPHiddenLayer::is_initialized() {
|
||||
return _initialized;
|
||||
}
|
||||
void MLPPHiddenLayer::initialize() {
|
||||
if (_initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
weights->resize(Size2i(n_hidden, input->size().x));
|
||||
bias->resize(n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationm(weights, weight_init);
|
||||
utils.bias_initializationv(bias);
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
void MLPPHiddenLayer::forward_pass() {
|
||||
if (!_initialized) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
@ -118,6 +155,10 @@ void MLPPHiddenLayer::forward_pass() {
|
||||
}
|
||||
|
||||
void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
|
||||
if (!_initialized) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
@ -149,13 +190,15 @@ MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunct
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
|
||||
weights->resize(Size2i(input->size().x, n_hidden));
|
||||
weights->resize(Size2i(n_hidden, input->size().x));
|
||||
bias->resize(n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationm(weights, weight_init);
|
||||
utils.bias_initializationv(bias);
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPHiddenLayer::MLPPHiddenLayer() {
|
||||
@ -179,6 +222,8 @@ MLPPHiddenLayer::MLPPHiddenLayer() {
|
||||
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
MLPPHiddenLayer::~MLPPHiddenLayer() {
|
||||
}
|
||||
@ -240,6 +285,9 @@ void MLPPHiddenLayer::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPHiddenLayer::set_weight_init);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPHiddenLayer::is_initialized);
|
||||
ClassDB::bind_method(D_METHOD("initialize"), &MLPPHiddenLayer::initialize);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPHiddenLayer::forward_pass);
|
||||
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPHiddenLayer::test);
|
||||
}
|
||||
@ -338,6 +386,7 @@ MLPPOldHiddenLayer::MLPPOldHiddenLayer(int p_n_hidden, std::string p_activation,
|
||||
void MLPPOldHiddenLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
@ -70,6 +70,9 @@ public:
|
||||
MLPPUtilities::WeightDistributionType get_weight_init() const;
|
||||
void set_weight_init(const MLPPUtilities::WeightDistributionType val);
|
||||
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
void forward_pass();
|
||||
void test(const Ref<MLPPVector> &x);
|
||||
|
||||
@ -103,6 +106,8 @@ protected:
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
class MLPPOldHiddenLayer {
|
||||
|
@ -16,6 +16,7 @@ int MLPPOutputLayer::get_n_hidden() {
|
||||
}
|
||||
void MLPPOutputLayer::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPActivation::ActivationFunction MLPPOutputLayer::get_activation() {
|
||||
@ -23,6 +24,7 @@ MLPPActivation::ActivationFunction MLPPOutputLayer::get_activation() {
|
||||
}
|
||||
void MLPPOutputLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
||||
activation = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPCost::CostTypes MLPPOutputLayer::get_cost() {
|
||||
@ -30,6 +32,7 @@ MLPPCost::CostTypes MLPPOutputLayer::get_cost() {
|
||||
}
|
||||
void MLPPOutputLayer::set_cost(const MLPPCost::CostTypes val) {
|
||||
cost = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPOutputLayer::get_input() {
|
||||
@ -37,6 +40,7 @@ Ref<MLPPMatrix> MLPPOutputLayer::get_input() {
|
||||
}
|
||||
void MLPPOutputLayer::set_input(const Ref<MLPPMatrix> &val) {
|
||||
input = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_weights() {
|
||||
@ -44,6 +48,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_weights() {
|
||||
}
|
||||
void MLPPOutputLayer::set_weights(const Ref<MLPPVector> &val) {
|
||||
weights = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPOutputLayer::MLPPOutputLayer::get_bias() {
|
||||
@ -51,6 +56,7 @@ real_t MLPPOutputLayer::MLPPOutputLayer::get_bias() {
|
||||
}
|
||||
void MLPPOutputLayer::set_bias(const real_t val) {
|
||||
bias = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_z() {
|
||||
@ -58,6 +64,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_z() {
|
||||
}
|
||||
void MLPPOutputLayer::set_z(const Ref<MLPPVector> &val) {
|
||||
z = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_a() {
|
||||
@ -65,6 +72,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_a() {
|
||||
}
|
||||
void MLPPOutputLayer::set_a(const Ref<MLPPVector> &val) {
|
||||
a = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_z_test() {
|
||||
@ -72,6 +80,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_z_test() {
|
||||
}
|
||||
void MLPPOutputLayer::set_z_test(const Ref<MLPPVector> &val) {
|
||||
z_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_a_test() {
|
||||
@ -79,6 +88,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_a_test() {
|
||||
}
|
||||
void MLPPOutputLayer::set_a_test(const Ref<MLPPVector> &val) {
|
||||
a_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_delta() {
|
||||
@ -86,6 +96,7 @@ Ref<MLPPVector> MLPPOutputLayer::get_delta() {
|
||||
}
|
||||
void MLPPOutputLayer::set_delta(const Ref<MLPPVector> &val) {
|
||||
delta = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPOutputLayer::get_reg() {
|
||||
@ -100,6 +111,7 @@ real_t MLPPOutputLayer::get_lambda() {
|
||||
}
|
||||
void MLPPOutputLayer::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPOutputLayer::get_alpha() {
|
||||
@ -107,6 +119,7 @@ real_t MLPPOutputLayer::get_alpha() {
|
||||
}
|
||||
void MLPPOutputLayer::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPUtilities::WeightDistributionType MLPPOutputLayer::get_weight_init() {
|
||||
@ -114,9 +127,32 @@ MLPPUtilities::WeightDistributionType MLPPOutputLayer::get_weight_init() {
|
||||
}
|
||||
void MLPPOutputLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
||||
weight_init = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
bool MLPPOutputLayer::is_initialized() {
|
||||
return _initialized;
|
||||
}
|
||||
void MLPPOutputLayer::initialize() {
|
||||
if (_initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
weights->resize(n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationv(weights, weight_init);
|
||||
bias = utils.bias_initializationr();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
void MLPPOutputLayer::forward_pass() {
|
||||
if (!_initialized) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
@ -125,6 +161,10 @@ void MLPPOutputLayer::forward_pass() {
|
||||
}
|
||||
|
||||
void MLPPOutputLayer::test(const Ref<MLPPVector> &x) {
|
||||
if (!_initialized) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
@ -162,6 +202,8 @@ MLPPOutputLayer::MLPPOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunct
|
||||
|
||||
utils.weight_initializationv(weights, weight_init);
|
||||
bias = utils.bias_initializationr();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPOutputLayer::MLPPOutputLayer() {
|
||||
@ -185,6 +227,8 @@ MLPPOutputLayer::MLPPOutputLayer() {
|
||||
|
||||
weights.instance();
|
||||
bias = 0;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
MLPPOutputLayer::~MLPPOutputLayer() {
|
||||
}
|
||||
@ -250,6 +294,9 @@ void MLPPOutputLayer::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPOutputLayer::set_weight_init);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPOutputLayer::is_initialized);
|
||||
ClassDB::bind_method(D_METHOD("initialize"), &MLPPOutputLayer::initialize);
|
||||
|
||||
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPOutputLayer::forward_pass);
|
||||
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPOutputLayer::test);
|
||||
}
|
||||
|
@ -74,6 +74,9 @@ public:
|
||||
MLPPUtilities::WeightDistributionType get_weight_init();
|
||||
void set_weight_init(const MLPPUtilities::WeightDistributionType val);
|
||||
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
void forward_pass();
|
||||
void test(const Ref<MLPPVector> &x);
|
||||
|
||||
@ -108,6 +111,8 @@ protected:
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
class MLPPOldOutputLayer {
|
||||
|
Loading…
Reference in New Issue
Block a user