mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-21 15:27:17 +01:00
Initial HiddenLayer rework.
This commit is contained in:
parent
ea4978f535
commit
a44d2c98a1
@ -12,6 +12,107 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
/*
|
||||
|
||||
void MLPPHiddenLayer::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPHiddenLayer::test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, 0);
|
||||
}
|
||||
|
||||
MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) :
|
||||
n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
|
||||
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization(n_hidden);
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
MLPPOldHiddenLayer::MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) :
|
||||
n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
|
||||
|
@ -8,14 +8,60 @@
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "core/containers/hash_map.h"
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/string/ustring.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../activation/activation.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPHiddenLayer : public Reference {
|
||||
GDCLASS(MLPPHiddenLayer, Reference);
|
||||
|
||||
public:
|
||||
int n_hidden;
|
||||
int activation;
|
||||
|
||||
Ref<MLPPMatrix> input;
|
||||
|
||||
Ref<MLPPMatrix> weights;
|
||||
Ref<MLPPVector> bias;
|
||||
|
||||
Ref<MLPPMatrix> z;
|
||||
Ref<MLPPMatrix> a;
|
||||
|
||||
HashMap<int, Ref<MLPPMatrix> (MLPPActivation::*)(const Ref<MLPPMatrix> &, bool)> activation_map;
|
||||
HashMap<int, Ref<MLPPVector> (MLPPActivation::*)(const Ref<MLPPVector> &, bool)> activation_test_map;
|
||||
|
||||
Ref<MLPPVector> z_test;
|
||||
Ref<MLPPVector> a_test;
|
||||
|
||||
Ref<MLPPMatrix> delta;
|
||||
|
||||
// Regularization Params
|
||||
String reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
String weight_init;
|
||||
|
||||
void forward_pass();
|
||||
void test(const Ref<MLPPVector> &x);
|
||||
|
||||
MLPPHiddenLayer(int p_n_hidden, int p_activation, Ref<MLPPMatrix> p_input, String p_weight_init, String p_reg, real_t p_lambda, real_t p_alpha);
|
||||
|
||||
MLPPHiddenLayer();
|
||||
~MLPPHiddenLayer();
|
||||
};
|
||||
|
||||
|
||||
class MLPPOldHiddenLayer {
|
||||
public:
|
||||
@ -51,5 +97,4 @@ public:
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
|
||||
#endif /* HiddenLayer_hpp */
|
Loading…
Reference in New Issue
Block a user