It's already set with ANativeWindow_setGeometry, and eventually set/changed also by eglCreateWindowSurface.
- avoid issues with older device where SurfaceView cycle create/changed/destroy appears broken:
calling create/changed/changed, and leading to "deuqueBuffer failed at server side, error: -19", with black screen.
- re-read the format after egl window surface is created, to report the correct one (sometimes, changed from RGBA8888 to RGB24)
wahil1976
This patch adds a written-from-scratch WSCONS driver for OpenBSD. It does not have hardcoded keymaps, and it features mouse support when wsmux is available.
For this to work, it needs access to the /dev/wskbd* devices which are not available to non-root users by default. Access to those can be granted by changing /etc/fbtab to give the logging user the ownership of those devices.
https://bugzilla.libsdl.org/show_bug.cgi?id=5308
The udev code labels devices that are found by this code with
ID_INPUT_KEY which in turn gets used by SDL to label the devices as
SDL_UDEV_DEVICE_KEYBOARD.
This was missing for the code path when udev is not running and as such
devices such as the power button of a phone was not detected as keyboard
input and no devices were emitted.
This fixes bad report parsing for various newer Xbox controllers, and this driver is now preferred over XInput, since it handles more than 4 controllers.
wahil1976
This patch adds the KBIO text input driver for FreeBSD, which allows text input to fully work without text spilling out into the console. It also supports accented input, AltGr keys and Alt Lock combinations.
Tested with US accent keys layout and various AltGr layouts.
Anything with X, Y and Z axes but no buttons is probably an
accelerometer (this is the assumption made in udev).
Signed-off-by: Simon McVittie <smcv@collabora.com>
Previously we only checked for at least one button or key and at least
the X and Y absolute axes, but this has both false positives and false
negatives.
Graphics tablets, trackpads and touchscreens all have buttons and
absolute X and Y axes, but we don't want to detect those as joysticks.
On normal Linux systems ordinary users do not have access to these
device nodes, but members of the 'input' group do.
Conversely, some game controllers only have digital buttons and no
analogue axes (the Nintendo Wiimote is an example), and some have axes
and no buttons (steering wheels or flight simulator rudders might not
have buttons).
Use the more elaborate heuristic factored out from SDL's udev code path
to handle these cases.
In an ideal world we could use exactly the same heuristic as udev's
input_id builtin, but that isn't under a suitable license for inclusion
in SDL, so we have to use a parallel implementation of something
vaguely similar.
Signed-off-by: Simon McVittie <smcv@collabora.com>
This works on capability bitfields that can either come from udev or
from ioctls, so it is equally applicable to both udev and non-udev
input device detection.
Signed-off-by: Simon McVittie <smcv@collabora.com>
When we request realtime priority from rtkit, we have a rttime limit. If we exceed
that limit, the kernel will send SIGKILL to the process to terminate it.
This isn't something that most high priority processes will want, only processes
that selectively opt into SCHED_RR/FIFO through SDL_HINT_THREAD_PRIORITY_POLICY
should be subject to this level of scrutiny.
This change:
* Switches non-apple posix OSs to use SCHED_OTHER instead of SCHED_RR
for SDL_THREAD_PRIORITY_HIGH/SDL_THREAD_PRIORITY_TIME_CRITICAL.
* Fixes using a hardcoded RLIMIT_RTTIME, instead queries it from rtkit
* Only sets RLIMIT_RTTIME for MakeRealtime rtkit requests
* Adds a note regarding the possible SIGKILL with SDL_HINT_THREAD_PRIORITY_POLICY
* Introduces SDL_HINT_THREAD_FORCE_REALTIME_TIME_CRITICAL to allow apps to acquire realtime scheduling policies on Linux
Debugging inside rtkit showed we were failing the RLIMIT_RTTIME check, now that we're asking for realtime and not just high-priority due to a change in SDL.
Between that and the DBus code in SDL being wrong in previous changelist I'm not sure how this could have ever worked.
Nov 02 20:34:15 redcore rtkit-daemon[2825]: Failed to parse MakeThreadRealtime() method call: Argument 1 is specified to be of type "uint32", but is actually of type "int32"
Nov 02 20:34:15 redcore rtkit-daemon[2825]: Failed to parse MakeThreadRealtime() method call: Argument 1 is specified to be of type "uint32", but is actually of type "int32"
Docs:
http://git.0pointer.net/rtkit.git/tree/README
CLIENTS:
To be able to make use of realtime scheduling clients may
request so with a small D-Bus interface that is accessible on
the interface org.freedesktop.RealtimeKit1 as object
/org/freedesktop/RealtimeKit1 on the service
org.freedesktop.RealtimeKit1:
void MakeThreadRealtime(u64 thread_id, u32 priority);
void MakeThreadHighPriority(u64 thread_id, s32 priority);
"In the second half of 2021, new apps will be required to publish with the Android App Bundle on Google Play"
(see https://developer.android.com/guide/app-bundle)
And "Android App Bundles don't support APK expansion (*.obb) files".