mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-18 15:07:16 +01:00
Fixed warnings in MLPPDualSVC.
This commit is contained in:
parent
1e793de7f7
commit
3036db18fb
@ -14,9 +14,14 @@
|
|||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <random>
|
#include <random>
|
||||||
|
|
||||||
|
MLPPDualSVC::MLPPDualSVC(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C, std::string p_kernel) {
|
||||||
|
inputSet = p_inputSet;
|
||||||
|
outputSet = p_outputSet;
|
||||||
|
n = p_inputSet.size();
|
||||||
|
k = p_inputSet[0].size();
|
||||||
|
C = p_C;
|
||||||
|
kernel = p_kernel;
|
||||||
|
|
||||||
MLPPDualSVC::MLPPDualSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel) :
|
|
||||||
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C), kernel(kernel) {
|
|
||||||
y_hat.resize(n);
|
y_hat.resize(n);
|
||||||
bias = MLPPUtilities::biasInitialization();
|
bias = MLPPUtilities::biasInitialization();
|
||||||
alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers.
|
alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers.
|
||||||
@ -49,10 +54,10 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
|
|||||||
|
|
||||||
// Calculating the bias
|
// Calculating the bias
|
||||||
real_t biasGradient = 0;
|
real_t biasGradient = 0;
|
||||||
for (int i = 0; i < alpha.size(); i++) {
|
for (uint32_t i = 0; i < alpha.size(); i++) {
|
||||||
real_t sum = 0;
|
real_t sum = 0;
|
||||||
if (alpha[i] < C && alpha[i] > 0) {
|
if (alpha[i] < C && alpha[i] > 0) {
|
||||||
for (int j = 0; j < alpha.size(); j++) {
|
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||||
if (alpha[j] > 0) {
|
if (alpha[j] > 0) {
|
||||||
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||||
}
|
}
|
||||||
@ -153,12 +158,12 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI)
|
|||||||
// }
|
// }
|
||||||
|
|
||||||
real_t MLPPDualSVC::score() {
|
real_t MLPPDualSVC::score() {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
return util.performance(y_hat, outputSet);
|
return util.performance(y_hat, outputSet);
|
||||||
}
|
}
|
||||||
|
|
||||||
void MLPPDualSVC::save(std::string fileName) {
|
void MLPPDualSVC::save(std::string fileName) {
|
||||||
MLPPUtilities util;
|
MLPPUtilities util;
|
||||||
util.saveParameters(fileName, alpha, bias);
|
util.saveParameters(fileName, alpha, bias);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -175,9 +180,9 @@ std::vector<real_t> MLPPDualSVC::Evaluate(std::vector<std::vector<real_t>> X) {
|
|||||||
std::vector<real_t> MLPPDualSVC::propagate(std::vector<std::vector<real_t>> X) {
|
std::vector<real_t> MLPPDualSVC::propagate(std::vector<std::vector<real_t>> X) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
std::vector<real_t> z;
|
std::vector<real_t> z;
|
||||||
for (int i = 0; i < X.size(); i++) {
|
for (uint32_t i = 0; i < X.size(); i++) {
|
||||||
real_t sum = 0;
|
real_t sum = 0;
|
||||||
for (int j = 0; j < alpha.size(); j++) {
|
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||||
if (alpha[j] != 0) {
|
if (alpha[j] != 0) {
|
||||||
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||||
}
|
}
|
||||||
@ -196,7 +201,7 @@ real_t MLPPDualSVC::Evaluate(std::vector<real_t> x) {
|
|||||||
real_t MLPPDualSVC::propagate(std::vector<real_t> x) {
|
real_t MLPPDualSVC::propagate(std::vector<real_t> x) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
real_t z = 0;
|
real_t z = 0;
|
||||||
for (int j = 0; j < alpha.size(); j++) {
|
for (uint32_t j = 0; j < alpha.size(); j++) {
|
||||||
if (alpha[j] != 0) {
|
if (alpha[j] != 0) {
|
||||||
z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
|
z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
|
||||||
}
|
}
|
||||||
@ -206,7 +211,6 @@ real_t MLPPDualSVC::propagate(std::vector<real_t> x) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPDualSVC::forwardPass() {
|
void MLPPDualSVC::forwardPass() {
|
||||||
MLPPLinAlg alg;
|
|
||||||
MLPPActivation avn;
|
MLPPActivation avn;
|
||||||
|
|
||||||
z = propagate(inputSet);
|
z = propagate(inputSet);
|
||||||
@ -214,7 +218,7 @@ void MLPPDualSVC::forwardPass() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void MLPPDualSVC::alphaProjection() {
|
void MLPPDualSVC::alphaProjection() {
|
||||||
for (int i = 0; i < alpha.size(); i++) {
|
for (uint32_t i = 0; i < alpha.size(); i++) {
|
||||||
if (alpha[i] > C) {
|
if (alpha[i] > C) {
|
||||||
alpha[i] = C;
|
alpha[i] = C;
|
||||||
} else if (alpha[i] < 0) {
|
} else if (alpha[i] < 0) {
|
||||||
@ -227,12 +231,16 @@ real_t MLPPDualSVC::kernelFunction(std::vector<real_t> u, std::vector<real_t> v,
|
|||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
if (kernel == "Linear") {
|
if (kernel == "Linear") {
|
||||||
return alg.dot(u, v);
|
return alg.dot(u, v);
|
||||||
} // warning: non-void function does not return a value in all control paths [-Wreturn-type]
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::vector<real_t>> MLPPDualSVC::kernelFunction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
|
std::vector<std::vector<real_t>> MLPPDualSVC::kernelFunction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
|
||||||
MLPPLinAlg alg;
|
MLPPLinAlg alg;
|
||||||
if (kernel == "Linear") {
|
if (kernel == "Linear") {
|
||||||
return alg.matmult(inputSet, alg.transpose(inputSet));
|
return alg.matmult(inputSet, alg.transpose(inputSet));
|
||||||
} // warning: non-void function does not return a value in all control paths [-Wreturn-type]
|
}
|
||||||
|
|
||||||
|
return std::vector<std::vector<real_t>>();
|
||||||
}
|
}
|
||||||
|
@ -16,8 +16,6 @@
|
|||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MLPPDualSVC {
|
class MLPPDualSVC {
|
||||||
public:
|
public:
|
||||||
MLPPDualSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel = "Linear");
|
MLPPDualSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel = "Linear");
|
||||||
@ -68,5 +66,4 @@ private:
|
|||||||
void UI(int epoch, real_t cost_prev);
|
void UI(int epoch, real_t cost_prev);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
#endif /* DualSVC_hpp */
|
#endif /* DualSVC_hpp */
|
||||||
|
Loading…
Reference in New Issue
Block a user