diff --git a/mlpp/dual_svc/dual_svc.cpp b/mlpp/dual_svc/dual_svc.cpp index 74494a7..f9309cb 100644 --- a/mlpp/dual_svc/dual_svc.cpp +++ b/mlpp/dual_svc/dual_svc.cpp @@ -14,9 +14,14 @@ #include #include +MLPPDualSVC::MLPPDualSVC(std::vector> p_inputSet, std::vector p_outputSet, real_t p_C, std::string p_kernel) { + inputSet = p_inputSet; + outputSet = p_outputSet; + n = p_inputSet.size(); + k = p_inputSet[0].size(); + C = p_C; + kernel = p_kernel; -MLPPDualSVC::MLPPDualSVC(std::vector> inputSet, std::vector outputSet, real_t C, std::string kernel) : - inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C), kernel(kernel) { y_hat.resize(n); bias = MLPPUtilities::biasInitialization(); alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers. @@ -49,10 +54,10 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) // Calculating the bias real_t biasGradient = 0; - for (int i = 0; i < alpha.size(); i++) { + for (uint32_t i = 0; i < alpha.size(); i++) { real_t sum = 0; if (alpha[i] < C && alpha[i] > 0) { - for (int j = 0; j < alpha.size(); j++) { + for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] > 0) { sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations. } @@ -153,12 +158,12 @@ void MLPPDualSVC::gradientDescent(real_t learning_rate, int max_epoch, bool UI) // } real_t MLPPDualSVC::score() { - MLPPUtilities util; + MLPPUtilities util; return util.performance(y_hat, outputSet); } void MLPPDualSVC::save(std::string fileName) { - MLPPUtilities util; + MLPPUtilities util; util.saveParameters(fileName, alpha, bias); } @@ -175,9 +180,9 @@ std::vector MLPPDualSVC::Evaluate(std::vector> X) { std::vector MLPPDualSVC::propagate(std::vector> X) { MLPPLinAlg alg; std::vector z; - for (int i = 0; i < X.size(); i++) { + for (uint32_t i = 0; i < X.size(); i++) { real_t sum = 0; - for (int j = 0; j < alpha.size(); j++) { + for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations. } @@ -196,7 +201,7 @@ real_t MLPPDualSVC::Evaluate(std::vector x) { real_t MLPPDualSVC::propagate(std::vector x) { MLPPLinAlg alg; real_t z = 0; - for (int j = 0; j < alpha.size(); j++) { + for (uint32_t j = 0; j < alpha.size(); j++) { if (alpha[j] != 0) { z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations. } @@ -206,7 +211,6 @@ real_t MLPPDualSVC::propagate(std::vector x) { } void MLPPDualSVC::forwardPass() { - MLPPLinAlg alg; MLPPActivation avn; z = propagate(inputSet); @@ -214,7 +218,7 @@ void MLPPDualSVC::forwardPass() { } void MLPPDualSVC::alphaProjection() { - for (int i = 0; i < alpha.size(); i++) { + for (uint32_t i = 0; i < alpha.size(); i++) { if (alpha[i] > C) { alpha[i] = C; } else if (alpha[i] < 0) { @@ -227,12 +231,16 @@ real_t MLPPDualSVC::kernelFunction(std::vector u, std::vector v, MLPPLinAlg alg; if (kernel == "Linear") { return alg.dot(u, v); - } // warning: non-void function does not return a value in all control paths [-Wreturn-type] + } + + return 0; } std::vector> MLPPDualSVC::kernelFunction(std::vector> A, std::vector> B, std::string kernel) { MLPPLinAlg alg; if (kernel == "Linear") { return alg.matmult(inputSet, alg.transpose(inputSet)); - } // warning: non-void function does not return a value in all control paths [-Wreturn-type] + } + + return std::vector>(); } diff --git a/mlpp/dual_svc/dual_svc.h b/mlpp/dual_svc/dual_svc.h index 476ef49..6fe679e 100644 --- a/mlpp/dual_svc/dual_svc.h +++ b/mlpp/dual_svc/dual_svc.h @@ -16,8 +16,6 @@ #include #include - - class MLPPDualSVC { public: MLPPDualSVC(std::vector> inputSet, std::vector outputSet, real_t C, std::string kernel = "Linear"); @@ -68,5 +66,4 @@ private: void UI(int epoch, real_t cost_prev); }; - #endif /* DualSVC_hpp */