mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-21 15:27:17 +01:00
Fixed warnings in MLPPExpReg.
This commit is contained in:
parent
d795b55baa
commit
1e793de7f7
@ -14,9 +14,15 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPExpReg::MLPPExpReg(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
n = p_inputSet.size();
|
||||
k = p_inputSet[0].size();
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
MLPPExpReg::MLPPExpReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
|
||||
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
|
||||
y_hat.resize(n);
|
||||
weights = MLPPUtilities::weightInitialization(k);
|
||||
initial = MLPPUtilities::weightInitialization(k);
|
||||
@ -142,7 +148,9 @@ void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
|
||||
// Creating the mini-batches
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
while (true) {
|
||||
for (int i = 0; i < n_mini_batch; i++) {
|
||||
@ -153,14 +161,14 @@ void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
for (int j = 0; j < k; j++) {
|
||||
// Calculating the weight gradient
|
||||
real_t sum = 0;
|
||||
for (int k = 0; k < outputMiniBatches[i].size(); k++) {
|
||||
for (uint32_t k = 0; k < outputMiniBatches[i].size(); k++) {
|
||||
sum += error[k] * inputMiniBatches[i][k][j] * std::pow(weights[j], inputMiniBatches[i][k][j] - 1);
|
||||
}
|
||||
real_t w_gradient = sum / outputMiniBatches[i].size();
|
||||
|
||||
// Calculating the initial gradient
|
||||
real_t sum2 = 0;
|
||||
for (int k = 0; k < outputMiniBatches[i].size(); k++) {
|
||||
for (uint32_t k = 0; k < outputMiniBatches[i].size(); k++) {
|
||||
sum2 += error[k] * std::pow(weights[j], inputMiniBatches[i][k][j]);
|
||||
}
|
||||
|
||||
@ -174,10 +182,11 @@ void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
|
||||
// Calculating the bias gradient
|
||||
real_t sum = 0;
|
||||
for (int j = 0; j < outputMiniBatches[i].size(); j++) {
|
||||
for (uint32_t j = 0; j < outputMiniBatches[i].size(); j++) {
|
||||
sum += (y_hat[j] - outputMiniBatches[i][j]);
|
||||
}
|
||||
real_t b_gradient = sum / outputMiniBatches[i].size();
|
||||
|
||||
//real_t b_gradient = sum / outputMiniBatches[i].size();
|
||||
y_hat = Evaluate(inputMiniBatches[i]);
|
||||
|
||||
if (UI) {
|
||||
@ -194,12 +203,12 @@ void MLPPExpReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
}
|
||||
|
||||
real_t MLPPExpReg::score() {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
}
|
||||
|
||||
void MLPPExpReg::save(std::string fileName) {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
util.saveParameters(fileName, weights, initial, bias);
|
||||
}
|
||||
|
||||
@ -212,9 +221,9 @@ real_t MLPPExpReg::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
std::vector<real_t> MLPPExpReg::Evaluate(std::vector<std::vector<real_t>> X) {
|
||||
std::vector<real_t> y_hat;
|
||||
y_hat.resize(X.size());
|
||||
for (int i = 0; i < X.size(); i++) {
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
y_hat[i] = 0;
|
||||
for (int j = 0; j < X[i].size(); j++) {
|
||||
for (uint32_t j = 0; j < X[i].size(); j++) {
|
||||
y_hat[i] += initial[j] * std::pow(weights[j], X[i][j]);
|
||||
}
|
||||
y_hat[i] += bias;
|
||||
@ -224,7 +233,7 @@ std::vector<real_t> MLPPExpReg::Evaluate(std::vector<std::vector<real_t>> X) {
|
||||
|
||||
real_t MLPPExpReg::Evaluate(std::vector<real_t> x) {
|
||||
real_t y_hat = 0;
|
||||
for (int i = 0; i < x.size(); i++) {
|
||||
for (uint32_t i = 0; i < x.size(); i++) {
|
||||
y_hat += initial[i] * std::pow(weights[i], x[i]);
|
||||
}
|
||||
|
||||
|
@ -13,7 +13,6 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
||||
class MLPPExpReg {
|
||||
public:
|
||||
MLPPExpReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
||||
@ -48,5 +47,4 @@ private:
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
};
|
||||
|
||||
|
||||
#endif /* ExpReg_hpp */
|
||||
|
Loading…
Reference in New Issue
Block a user