pmlpp/mlpp/gaussian_nb/gaussian_nb.cpp

218 lines
5.5 KiB
C++
Raw Normal View History

//
// GaussianNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
2023-01-24 18:12:23 +01:00
#include "gaussian_nb.h"
2023-04-27 11:10:48 +02:00
#include "core/math/math_defs.h"
2023-01-24 18:12:23 +01:00
#include "../lin_alg/lin_alg.h"
2023-01-24 19:00:54 +01:00
#include "../stat/stat.h"
2023-01-24 18:12:23 +01:00
#include "../utilities/utilities.h"
/*
Ref<MLPPMatrix> MLPPGaussianNB::get_input_set() {
return _input_set;
}
void MLPPGaussianNB::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
}
Ref<MLPPVector> MLPPGaussianNB::get_output_set() {
return _output_set;
}
void MLPPGaussianNB::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
}
2023-01-24 19:20:18 +01:00
int MLPPGaussianNB::get_class_num() {
return _class_num;
}
void MLPPGaussianNB::set_class_num(const int val) {
_class_num = val;
2023-01-24 19:00:54 +01:00
}
*/
2023-01-24 19:00:54 +01:00
Ref<MLPPVector> MLPPGaussianNB::model_set_test(const Ref<MLPPMatrix> &X) {
Ref<MLPPVector> y_hat;
y_hat.instance();
y_hat->resize(X->size().y);
Ref<MLPPVector> x_row_tmp;
x_row_tmp.instance();
x_row_tmp->resize(X->size().x);
for (int i = 0; i < X->size().y; i++) {
X->get_row_into_mlpp_vector(i, x_row_tmp);
y_hat->set_element(i, model_test(x_row_tmp));
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:00:54 +01:00
return y_hat;
}
real_t MLPPGaussianNB::model_test(const Ref<MLPPVector> &x) {
LocalVector<real_t> score;
score.resize(_class_num);
2023-01-27 13:01:16 +01:00
real_t y_hat_i = 1;
for (int i = _class_num - 1; i >= 0; i--) {
real_t sigma_i = _sigma->get_element(i);
real_t x_i = x->get_element(i);
real_t mu_i = _mu->get_element(i);
2023-04-27 11:10:48 +02:00
y_hat_i += Math::log(_priors->get_element(i) * (1 / Math::sqrt(2 * Math_PI * sigma_i * sigma_i)) * Math::exp(-(x_i * mu_i) * (x_i * mu_i) / (2 * sigma_i * sigma_i)));
score[i] = Math::exp(y_hat_i);
2023-01-24 19:00:54 +01:00
}
real_t max_element = -Math_INF;
int max_element_index = 0;
for (int i = 0; i < _class_num; ++i) {
real_t score_i = score[i];
if (score_i > max_element) {
max_element = score_i;
max_element_index = i;
}
}
return max_element_index;
2023-01-24 19:00:54 +01:00
}
2023-01-27 13:01:16 +01:00
real_t MLPPGaussianNB::score() {
2023-02-10 22:02:57 +01:00
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
2023-01-24 19:00:54 +01:00
}
bool MLPPGaussianNB::is_initialized() {
return _initialized;
}
void MLPPGaussianNB::initialize() {
if (_initialized) {
return;
}
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_initialized = true;
}
MLPPGaussianNB::MLPPGaussianNB(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_class_num) {
_input_set = p_input_set;
_output_set = p_output_set;
_class_num = p_class_num;
_mu.instance();
_sigma.instance();
_priors.instance();
_y_hat.instance();
_y_hat->resize(_output_set->size());
evaluate();
_initialized = true;
}
MLPPGaussianNB::MLPPGaussianNB() {
_initialized = false;
}
MLPPGaussianNB::~MLPPGaussianNB() {
}
void MLPPGaussianNB::evaluate() {
2023-02-10 22:02:57 +01:00
MLPPStat stat;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
// Computing mu_k_y and sigma_k_y
_mu->resize(_class_num);
_sigma->resize(_class_num);
Ref<MLPPVector> set_vec;
set_vec.instance();
for (int i = _class_num - 1; i >= 0; i--) {
PoolRealArray set;
for (int j = 0; j < _input_set->size().y; j++) {
for (int k = 0; k < _input_set->size().x; k++) {
if (_output_set->get_element(j) == i) {
set.push_back(_input_set->get_element(j, k));
2023-01-24 19:00:54 +01:00
}
}
}
set_vec->set_from_pool_vector(set);
_mu->set_element(i, stat.meanv(set_vec));
_sigma->set_element(i, stat.standard_deviationv(set_vec));
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:00:54 +01:00
// Priors
_priors->resize(_class_num);
_priors->fill(0);
for (int i = 0; i < _output_set->size(); i++) {
int indx = static_cast<int>(_output_set->get_element(i));
_priors->set_element(indx, _priors->get_element(indx));
2023-01-24 19:00:54 +01:00
}
_priors = alg.scalar_multiplynv(real_t(1) / real_t(_output_set->size()), _priors);
for (int i = 0; i < _output_set->size(); i++) {
LocalVector<real_t> score;
score.resize(_class_num);
2023-01-27 13:01:16 +01:00
real_t y_hat_i = 1;
for (int j = _class_num - 1; j >= 0; j--) {
for (int k = 0; k < _input_set->size().x; k++) {
real_t sigma_j = _sigma->get_element(j);
real_t mu_j = _mu->get_element(j);
real_t input_set_i_k = _input_set->get_element(i, k);
2023-04-27 11:10:48 +02:00
y_hat_i += Math::log(_priors->get_element(j) * (1 / Math::sqrt(2 * Math_PI * sigma_j * sigma_j)) * Math::exp(-(input_set_i_k * mu_j) * (input_set_i_k * mu_j) / (2 * sigma_j * sigma_j)));
}
score[j] = Math::exp(y_hat_i);
}
real_t max_element = -Math_INF;
int max_element_index = 0;
for (int ii = 0; ii < _class_num; ++ii) {
real_t score_ii = score[ii];
if (score_ii > max_element) {
max_element = score_ii;
max_element_index = ii;
2023-01-24 19:00:54 +01:00
}
}
_y_hat->set_element(i, max_element_index);
2023-01-24 19:00:54 +01:00
}
}
void MLPPGaussianNB::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGaussianNB::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGaussianNB::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGaussianNB::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGaussianNB::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGaussianNB::get_k);
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGaussianNB::set_k);
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGaussianNB::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGaussianNB::model_test);
ClassDB::bind_method(D_METHOD("score"), &MLPPGaussianNB::score);
*/
}