mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-30 16:49:21 +01:00
Initial cleanup pass on MLPPGaussianNB.
This commit is contained in:
parent
afedf90694
commit
f7c3506734
@ -13,76 +13,147 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPGaussianNB::MLPPGaussianNB(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, int p_class_num) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
class_num = p_class_num;
|
||||
|
||||
y_hat.resize(outputSet.size());
|
||||
Evaluate();
|
||||
/*
|
||||
Ref<MLPPMatrix> MLPPGaussianNB::get_input_set() {
|
||||
return _input_set;
|
||||
}
|
||||
void MLPPGaussianNB::set_input_set(const Ref<MLPPMatrix> &val) {
|
||||
_input_set = val;
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPGaussianNB::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
Ref<MLPPVector> MLPPGaussianNB::get_output_set() {
|
||||
return _output_set;
|
||||
}
|
||||
void MLPPGaussianNB::set_output_set(const Ref<MLPPVector> &val) {
|
||||
_output_set = val;
|
||||
}
|
||||
|
||||
int MLPPGaussianNB::get_class_num() {
|
||||
return _class_num;
|
||||
}
|
||||
void MLPPGaussianNB::set_class_num(const int val) {
|
||||
_class_num = val;
|
||||
}
|
||||
*/
|
||||
|
||||
std::vector<real_t> MLPPGaussianNB::model_set_test(std::vector<std::vector<real_t>> X) {
|
||||
std::vector<real_t> y_hat;
|
||||
for (uint32_t i = 0; i < X.size(); i++) {
|
||||
y_hat.push_back(modelTest(X[i]));
|
||||
y_hat.push_back(model_test(X[i]));
|
||||
}
|
||||
return y_hat;
|
||||
}
|
||||
|
||||
real_t MLPPGaussianNB::modelTest(std::vector<real_t> x) {
|
||||
real_t score[class_num];
|
||||
real_t MLPPGaussianNB::model_test(std::vector<real_t> x) {
|
||||
real_t score[_class_num];
|
||||
real_t y_hat_i = 1;
|
||||
for (int i = class_num - 1; i >= 0; i--) {
|
||||
y_hat_i += std::log(priors[i] * (1 / sqrt(2 * M_PI * sigma[i] * sigma[i])) * exp(-(x[i] * mu[i]) * (x[i] * mu[i]) / (2 * sigma[i] * sigma[i])));
|
||||
|
||||
for (int i = _class_num - 1; i >= 0; i--) {
|
||||
y_hat_i += std::log(_priors[i] * (1 / sqrt(2 * M_PI * _sigma[i] * _sigma[i])) * exp(-(x[i] * _mu[i]) * (x[i] * _mu[i]) / (2 * _sigma[i] * _sigma[i])));
|
||||
score[i] = exp(y_hat_i);
|
||||
}
|
||||
|
||||
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
}
|
||||
|
||||
real_t MLPPGaussianNB::score() {
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
return util.performance(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
void MLPPGaussianNB::Evaluate() {
|
||||
bool MLPPGaussianNB::is_initialized() {
|
||||
return _initialized;
|
||||
}
|
||||
void MLPPGaussianNB::initialize() {
|
||||
if (_initialized) {
|
||||
return;
|
||||
}
|
||||
|
||||
//ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPGaussianNB::MLPPGaussianNB(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, int p_class_num) {
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
_class_num = p_class_num;
|
||||
|
||||
_y_hat.resize(_output_set.size());
|
||||
|
||||
evaluate();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPGaussianNB::MLPPGaussianNB() {
|
||||
_initialized = false;
|
||||
}
|
||||
MLPPGaussianNB::~MLPPGaussianNB() {
|
||||
}
|
||||
|
||||
void MLPPGaussianNB::evaluate() {
|
||||
MLPPStat stat;
|
||||
MLPPLinAlg alg;
|
||||
|
||||
// Computing mu_k_y and sigma_k_y
|
||||
mu.resize(class_num);
|
||||
sigma.resize(class_num);
|
||||
for (int i = class_num - 1; i >= 0; i--) {
|
||||
_mu.resize(_class_num);
|
||||
_sigma.resize(_class_num);
|
||||
|
||||
for (int i = _class_num - 1; i >= 0; i--) {
|
||||
std::vector<real_t> set;
|
||||
for (uint32_t j = 0; j < inputSet.size(); j++) {
|
||||
for (uint32_t k = 0; k < inputSet[j].size(); k++) {
|
||||
if (outputSet[j] == i) {
|
||||
set.push_back(inputSet[j][k]);
|
||||
for (uint32_t j = 0; j < _input_set.size(); j++) {
|
||||
for (uint32_t k = 0; k < _input_set[j].size(); k++) {
|
||||
if (_output_set[j] == i) {
|
||||
set.push_back(_input_set[j][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
mu[i] = stat.mean(set);
|
||||
sigma[i] = stat.standardDeviation(set);
|
||||
|
||||
_mu[i] = stat.mean(set);
|
||||
_sigma[i] = stat.standardDeviation(set);
|
||||
}
|
||||
|
||||
// Priors
|
||||
priors.resize(class_num);
|
||||
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||||
priors[int(outputSet[i])]++;
|
||||
_priors.resize(_class_num);
|
||||
for (uint32_t i = 0; i < _output_set.size(); i++) {
|
||||
_priors[int(_output_set[i])]++;
|
||||
}
|
||||
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
|
||||
_priors = alg.scalarMultiply(real_t(1) / real_t(_output_set.size()), _priors);
|
||||
|
||||
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
||||
real_t score[class_num];
|
||||
for (uint32_t i = 0; i < _output_set.size(); i++) {
|
||||
real_t score[_class_num];
|
||||
real_t y_hat_i = 1;
|
||||
for (int j = class_num - 1; j >= 0; j--) {
|
||||
for (uint32_t k = 0; k < inputSet[i].size(); k++) {
|
||||
y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j])));
|
||||
|
||||
for (int j = _class_num - 1; j >= 0; j--) {
|
||||
for (uint32_t k = 0; k < _input_set[i].size(); k++) {
|
||||
y_hat_i += std::log(_priors[j] * (1 / sqrt(2 * M_PI * _sigma[j] * _sigma[j])) * exp(-(_input_set[i][k] * _mu[j]) * (_input_set[i][k] * _mu[j]) / (2 * _sigma[j] * _sigma[j])));
|
||||
}
|
||||
score[j] = exp(y_hat_i);
|
||||
std::cout << score[j] << std::endl;
|
||||
}
|
||||
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
|
||||
_y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
||||
std::cout << std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPGaussianNB::_bind_methods() {
|
||||
/*
|
||||
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGaussianNB::get_input_set);
|
||||
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGaussianNB::set_input_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGaussianNB::get_output_set);
|
||||
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGaussianNB::set_output_set);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGaussianNB::get_k);
|
||||
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGaussianNB::set_k);
|
||||
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
|
||||
|
||||
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGaussianNB::model_set_test);
|
||||
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGaussianNB::model_test);
|
||||
ClassDB::bind_method(D_METHOD("score"), &MLPPGaussianNB::score);
|
||||
*/
|
||||
}
|
||||
|
@ -10,28 +10,58 @@
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
class MLPPGaussianNB {
|
||||
class MLPPGaussianNB : public Reference {
|
||||
GDCLASS(MLPPGaussianNB, Reference);
|
||||
|
||||
public:
|
||||
MLPPGaussianNB(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
/*
|
||||
Ref<MLPPMatrix> get_input_set();
|
||||
void set_input_set(const Ref<MLPPMatrix> &val);
|
||||
|
||||
Ref<MLPPVector> get_output_set();
|
||||
void set_output_set(const Ref<MLPPVector> &val);
|
||||
|
||||
int get_class_num();
|
||||
void set_class_num(const int val);
|
||||
*/
|
||||
|
||||
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
|
||||
real_t model_test(std::vector<real_t> x);
|
||||
|
||||
real_t score();
|
||||
|
||||
private:
|
||||
void Evaluate();
|
||||
bool is_initialized();
|
||||
void initialize();
|
||||
|
||||
int class_num;
|
||||
MLPPGaussianNB(std::vector<std::vector<real_t>> p_input_set, std::vector<real_t> p_output_set, int p_class_num);
|
||||
|
||||
std::vector<real_t> priors;
|
||||
std::vector<real_t> mu;
|
||||
std::vector<real_t> sigma;
|
||||
MLPPGaussianNB();
|
||||
~MLPPGaussianNB();
|
||||
|
||||
std::vector<std::vector<real_t>> inputSet;
|
||||
std::vector<real_t> outputSet;
|
||||
protected:
|
||||
void evaluate();
|
||||
|
||||
std::vector<real_t> y_hat;
|
||||
static void _bind_methods();
|
||||
|
||||
int _class_num;
|
||||
|
||||
std::vector<real_t> _priors;
|
||||
std::vector<real_t> _mu;
|
||||
std::vector<real_t> _sigma;
|
||||
|
||||
std::vector<std::vector<real_t>> _input_set;
|
||||
std::vector<real_t> _output_set;
|
||||
|
||||
std::vector<real_t> _y_hat;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
#endif /* GaussianNB_hpp */
|
||||
|
@ -738,8 +738,11 @@ void MLPPTests::test_naive_bayes() {
|
||||
MLPPBernoulliNB BNB(alg.transpose(inputSet), outputSet);
|
||||
alg.printVector(BNB.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
MLPPGaussianNBOld GNBOld(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(GNBOld.modelSetTest(alg.transpose(inputSet)));
|
||||
|
||||
MLPPGaussianNB GNB(alg.transpose(inputSet), outputSet, 2);
|
||||
alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
||||
alg.printVector(GNB.model_set_test(alg.transpose(inputSet)));
|
||||
}
|
||||
void MLPPTests::test_k_means(bool ui) {
|
||||
// KMeans
|
||||
|
Loading…
Reference in New Issue
Block a user