pmlpp/mlpp/c_log_log_reg/c_log_log_reg.cpp

273 lines
6.8 KiB
C++
Raw Normal View History

2023-01-24 18:12:23 +01:00
#include "c_log_log_reg.h"
#include "../activation/activation.h"
2023-01-24 19:00:54 +01:00
#include "../cost/cost.h"
2023-01-24 18:12:23 +01:00
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <random>
Ref<MLPPVector> MLPPCLogLogReg::model_set_test(const Ref<MLPPMatrix> &X) {
return evaluatem(X);
2023-01-24 19:00:54 +01:00
}
real_t MLPPCLogLogReg::model_test(const Ref<MLPPVector> &x) {
return evaluatev(x);
2023-01-24 19:00:54 +01:00
}
void MLPPCLogLogReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
forward_pass();
2023-01-24 19:00:54 +01:00
while (true) {
cost_prev = cost(_y_hat, _output_set);
2023-01-24 19:00:54 +01:00
2023-04-30 18:46:53 +02:00
Ref<MLPPVector> error = _y_hat->subn(_output_set);
2023-01-24 19:00:54 +01:00
// Calculating the weight gradients
2023-04-30 18:46:53 +02:00
_weights->sub(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.cloglog_derivv(_z)))->scalar_multiplyn(learning_rate / _n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
2023-01-24 19:00:54 +01:00
// Calculating the bias gradients
2023-04-30 18:46:53 +02:00
bias -= learning_rate * error->hadamard_productn(avn.cloglog_derivv(_z))->sum_elements() / _n;
2023-01-24 19:00:54 +01:00
forward_pass();
2023-01-24 19:00:54 +01:00
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, bias);
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:00:54 +01:00
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogReg::mle(real_t learning_rate, int max_epoch, bool ui) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
forward_pass();
2023-01-24 19:00:54 +01:00
while (true) {
cost_prev = cost(_y_hat, _output_set);
2023-01-24 19:00:54 +01:00
2023-04-30 18:46:53 +02:00
Ref<MLPPVector> error = _y_hat->subn(_output_set);
2023-01-24 19:00:54 +01:00
2023-04-30 18:46:53 +02:00
_weights->add(_input_set->transposen()->mult_vec(error->hadamard_productn(avn.cloglog_derivv(_z)))->scalar_multiplyn(learning_rate / _n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
2023-01-24 19:00:54 +01:00
// Calculating the bias gradients
2023-04-30 18:46:53 +02:00
bias += learning_rate * error->hadamard_productn(avn.cloglog_derivv(_z))->sum_elements() / _n;
2023-01-24 19:00:54 +01:00
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, bias);
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:00:54 +01:00
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogReg::sgd(real_t learning_rate, int max_epoch, bool p_) {
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
forward_pass();
2023-01-24 19:00:54 +01:00
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> y_hat_row_tmp;
y_hat_row_tmp.instance();
y_hat_row_tmp->resize(1);
Ref<MLPPVector> output_set_row_tmp;
output_set_row_tmp.instance();
output_set_row_tmp->resize(1);
2023-01-24 19:00:54 +01:00
while (true) {
int output_index = distribution(generator);
2023-01-24 19:00:54 +01:00
2023-04-29 15:07:30 +02:00
_input_set->row_get_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_element_set = _output_set->element_get(output_index);
output_set_row_tmp->element_set(0, output_element_set);
2023-01-24 19:00:54 +01:00
real_t y_hat = evaluatev(input_set_row_tmp);
y_hat_row_tmp->element_set(0, y_hat);
real_t z = propagatev(input_set_row_tmp);
cost_prev = cost(y_hat_row_tmp, output_set_row_tmp);
real_t error = y_hat - output_element_set;
2023-01-24 19:00:54 +01:00
// Weight Updation
2023-04-30 18:46:53 +02:00
_weights->sub(input_set_row_tmp->scalar_multiplyn(learning_rate * error * Math::exp(z - Math::exp(z))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
2023-01-24 19:00:54 +01:00
// Bias updation
bias -= learning_rate * error * exp(z - exp(z));
y_hat = evaluatev(input_set_row_tmp);
2023-01-24 19:00:54 +01:00
if (p_) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_row_tmp, output_set_row_tmp));
MLPPUtilities::print_ui_vb(_weights, bias);
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:00:54 +01:00
epoch++;
if (epoch > max_epoch) {
break;
}
}
forward_pass();
2023-01-24 19:00:54 +01:00
}
void MLPPCLogLogReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool p_) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-27 13:01:16 +01:00
real_t cost_prev = 0;
2023-01-24 19:00:54 +01:00
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = _n / mini_batch_size;
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
2023-01-24 19:00:54 +01:00
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
Ref<MLPPMatrix> current_input_batch = batches.input_sets[i];
Ref<MLPPVector> current_output_batch = batches.output_sets[i];
Ref<MLPPVector> y_hat = evaluatem(current_input_batch);
Ref<MLPPVector> z = propagatem(current_input_batch);
cost_prev = cost(y_hat, current_output_batch);
2023-01-24 19:00:54 +01:00
2023-04-30 18:46:53 +02:00
Ref<MLPPVector> error = y_hat->subn(current_output_batch);
2023-01-24 19:00:54 +01:00
// Calculating the weight gradients
2023-04-30 18:46:53 +02:00
_weights->sub(current_input_batch->transposen()->mult_vec(error->hadamard_productn(avn.cloglog_derivv(z)))->scalar_multiplyn(learning_rate / _n));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
2023-01-24 19:00:54 +01:00
// Calculating the bias gradients
2023-04-30 18:46:53 +02:00
bias -= learning_rate * error->hadamard_productn(avn.cloglog_derivv(z))->sum_elements() / _n;
2023-01-24 19:00:54 +01:00
forward_pass();
2023-01-24 19:00:54 +01:00
y_hat = evaluatem(current_input_batch);
2023-01-24 19:00:54 +01:00
if (p_) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output_batch));
MLPPUtilities::print_ui_vb(_weights, bias);
2023-01-24 19:00:54 +01:00
}
}
2023-01-24 19:00:54 +01:00
epoch++;
2023-01-24 19:00:54 +01:00
if (epoch > max_epoch) {
break;
}
}
forward_pass();
2023-01-24 19:00:54 +01:00
}
2023-01-27 13:01:16 +01:00
real_t MLPPCLogLogReg::score() {
2023-02-10 22:40:20 +01:00
MLPPUtilities util;
return util.performance_vec(_y_hat, _output_set);
2023-01-24 19:00:54 +01:00
}
MLPPCLogLogReg::MLPPCLogLogReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.instance();
_y_hat->resize(_n);
MLPPUtilities utilities;
_weights.instance();
_weights->resize(_k);
utilities.weight_initializationv(_weights);
bias = utilities.bias_initializationr();
}
MLPPCLogLogReg::MLPPCLogLogReg() {
}
MLPPCLogLogReg::~MLPPCLogLogReg() {
}
real_t MLPPCLogLogReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
MLPPCost mlpp_cost;
return mlpp_cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
2023-01-24 19:00:54 +01:00
}
real_t MLPPCLogLogReg::evaluatev(const Ref<MLPPVector> &x) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-04-30 18:46:53 +02:00
return avn.cloglog_normr(_weights->dot(x) + bias);
2023-01-24 19:00:54 +01:00
}
real_t MLPPCLogLogReg::propagatev(const Ref<MLPPVector> &x) {
2023-04-30 18:46:53 +02:00
return _weights->dot(x) + bias;
2023-01-24 19:00:54 +01:00
}
Ref<MLPPVector> MLPPCLogLogReg::evaluatem(const Ref<MLPPMatrix> &X) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-04-30 18:46:53 +02:00
return avn.cloglog_normv(X->mult_vec(_weights)->scalar_addn(bias));
2023-01-24 19:00:54 +01:00
}
Ref<MLPPVector> MLPPCLogLogReg::propagatem(const Ref<MLPPMatrix> &X) {
2023-04-30 18:46:53 +02:00
return X->mult_vec(_weights)->scalar_addn(bias);
2023-01-24 19:00:54 +01:00
}
// cloglog ( wTx + b )
void MLPPCLogLogReg::forward_pass() {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
_z = propagatem(_input_set);
_y_hat = avn.cloglog_normv(_z);
2023-01-24 19:00:54 +01:00
}
void MLPPCLogLogReg::_bind_methods() {
}