pmlpp/mlpp/c_log_log_reg/c_log_log_reg.cpp

223 lines
6.2 KiB
C++
Raw Normal View History

//
// CLogLogReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
2023-01-24 18:12:23 +01:00
#include "c_log_log_reg.h"
#include "../activation/activation.h"
2023-01-24 19:00:54 +01:00
#include "../cost/cost.h"
2023-01-24 18:12:23 +01:00
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
2023-01-24 19:29:29 +01:00
MLPPCLogLogReg::MLPPCLogLogReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg, double lambda, double alpha) :
2023-01-24 19:00:54 +01:00
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
2023-01-24 19:00:54 +01:00
}
2023-01-24 19:29:29 +01:00
std::vector<double> MLPPCLogLogReg::modelSetTest(std::vector<std::vector<double>> X) {
2023-01-24 19:00:54 +01:00
return Evaluate(X);
}
2023-01-24 19:29:29 +01:00
double MLPPCLogLogReg::modelTest(std::vector<double> x) {
2023-01-24 19:00:54 +01:00
return Evaluate(x);
}
2023-01-24 19:29:29 +01:00
void MLPPCLogLogReg::gradientDescent(double learning_rate, int max_epoch, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:00:54 +01:00
double cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<double> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
2023-01-24 19:00:54 +01:00
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
2023-01-24 19:29:29 +01:00
void MLPPCLogLogReg::MLE(double learning_rate, int max_epoch, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:00:54 +01:00
double cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<double> error = alg.subtraction(y_hat, outputSet);
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
2023-01-24 19:00:54 +01:00
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
2023-01-24 19:29:29 +01:00
void MLPPCLogLogReg::SGD(double learning_rate, int max_epoch, bool UI) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:00:54 +01:00
double cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
double y_hat = Evaluate(inputSet[outputIndex]);
double z = propagate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
double error = y_hat - outputSet[outputIndex];
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * exp(z - exp(z)), inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Bias updation
bias -= learning_rate * error * exp(z - exp(z));
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
2023-01-24 19:00:54 +01:00
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
2023-01-24 19:29:29 +01:00
void MLPPCLogLogReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI) {
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:00:54 +01:00
double cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
2023-01-24 19:00:54 +01:00
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
std::vector<double> z = propagate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<double> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
2023-01-24 19:00:54 +01:00
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
2023-01-24 19:29:29 +01:00
double MLPPCLogLogReg::score() {
MLPPUtilities util;
2023-01-24 19:00:54 +01:00
return util.performance(y_hat, outputSet);
}
2023-01-24 19:29:29 +01:00
double MLPPCLogLogReg::Cost(std::vector<double> y_hat, std::vector<double> y) {
2023-01-25 00:54:50 +01:00
MLPPReg regularization;
2023-01-24 19:37:08 +01:00
class MLPPCost cost;
2023-01-24 19:00:54 +01:00
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
2023-01-24 19:29:29 +01:00
std::vector<double> MLPPCLogLogReg::Evaluate(std::vector<std::vector<double>> X) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
2023-01-24 19:29:29 +01:00
std::vector<double> MLPPCLogLogReg::propagate(std::vector<std::vector<double>> X) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
2023-01-24 19:29:29 +01:00
double MLPPCLogLogReg::Evaluate(std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
return avn.cloglog(alg.dot(weights, x) + bias);
}
2023-01-24 19:29:29 +01:00
double MLPPCLogLogReg::propagate(std::vector<double> x) {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:00:54 +01:00
return alg.dot(weights, x) + bias;
}
// cloglog ( wTx + b )
2023-01-24 19:29:29 +01:00
void MLPPCLogLogReg::forwardPass() {
2023-01-25 00:29:02 +01:00
MLPPLinAlg alg;
2023-01-24 19:23:30 +01:00
MLPPActivation avn;
2023-01-24 19:00:54 +01:00
z = propagate(inputSet);
y_hat = avn.cloglog(z);
}