pmlpp/mlp/mlp.h

133 lines
4.6 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_MLP_H
#define MLPP_MLP_H
2023-12-30 00:41:59 +01:00
/*************************************************************************/
/* mlp.h */
/*************************************************************************/
/* This file is part of: */
/* PMLPP Machine Learning Library */
/* https://github.com/Relintai/pmlpp */
/*************************************************************************/
2023-12-30 00:43:39 +01:00
/* Copyright (c) 2023-present Péter Magyar. */
2023-12-30 00:41:59 +01:00
/* Copyright (c) 2022-2023 Marc Melikyan */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
2024-01-25 13:42:45 +01:00
#ifdef USING_SFW
#include "sfw.h"
#else
2023-02-04 16:48:31 +01:00
#include "core/containers/vector.h"
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-02-04 16:48:31 +01:00
#include "core/string/ustring.h"
#include "core/variant/variant.h"
#include "core/object/reference.h"
2024-01-25 13:42:45 +01:00
#endif
2023-02-04 16:48:31 +01:00
2023-02-05 00:58:00 +01:00
#include "../regularization/reg.h"
2023-02-04 16:48:31 +01:00
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
2023-01-27 13:01:16 +01:00
#include <map>
#include <string>
2023-01-24 19:00:54 +01:00
#include <vector>
2023-02-04 16:48:31 +01:00
class MLPPMLP : public Reference {
GDCLASS(MLPPMLP, Reference);
2023-02-04 16:13:54 +01:00
public:
2023-02-05 00:58:00 +01:00
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
int get_n_hidden();
void set_n_hidden(const int val);
real_t get_lambda();
void set_lambda(const real_t val);
real_t get_alpha();
void set_alpha(const real_t val);
MLPPReg::RegularizationType get_reg();
void set_reg(const MLPPReg::RegularizationType val);
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
bool is_initialized();
void initialize();
2023-02-04 16:48:31 +01:00
void gradient_descent(real_t learning_rate, int max_epoch, bool UI = false);
void sgd(real_t learning_rate, int max_epoch, bool UI = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
2023-02-04 16:13:54 +01:00
real_t score();
2023-02-05 00:58:00 +01:00
void save(const String &file_name);
2023-02-04 16:13:54 +01:00
2023-02-05 00:58:00 +01:00
MLPPMLP(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
2023-02-04 16:48:31 +01:00
MLPPMLP();
~MLPPMLP();
2023-02-05 00:58:00 +01:00
protected:
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
void propagatem(const Ref<MLPPMatrix> &X, Ref<MLPPMatrix> z2_out, Ref<MLPPMatrix> a2_out);
2023-02-04 16:13:54 +01:00
2023-02-05 00:58:00 +01:00
real_t evaluatev(const Ref<MLPPVector> &x);
void propagatev(const Ref<MLPPVector> &x, Ref<MLPPVector> z2_out, Ref<MLPPVector> a2_out);
2023-02-04 16:48:31 +01:00
void forward_pass();
2023-02-04 16:13:54 +01:00
2023-02-05 00:58:00 +01:00
static void _bind_methods();
2023-02-04 16:13:54 +01:00
2023-02-13 00:19:16 +01:00
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _y_hat;
2023-02-04 16:13:54 +01:00
2023-02-13 00:19:16 +01:00
Ref<MLPPMatrix> _weights1;
Ref<MLPPVector> _weights2;
2023-02-05 00:58:00 +01:00
2023-02-13 00:19:16 +01:00
Ref<MLPPVector> _bias1;
real_t _bias2;
2023-02-04 16:13:54 +01:00
2023-02-13 00:19:16 +01:00
Ref<MLPPMatrix> _z2;
Ref<MLPPMatrix> _a2;
2023-02-04 16:13:54 +01:00
2023-02-13 00:19:16 +01:00
int _n;
int _k;
int _n_hidden;
2023-02-04 16:13:54 +01:00
// Regularization Params
2023-02-13 00:19:16 +01:00
MLPPReg::RegularizationType _reg;
real_t _lambda; /* Regularization Parameter */
real_t _alpha; /* This is the controlling param for Elastic Net*/
2023-02-05 00:58:00 +01:00
2023-02-11 09:53:16 +01:00
bool _initialized;
2023-02-04 16:13:54 +01:00
};
#endif /* MLP_hpp */