mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-12-22 15:06:47 +01:00
Codestyle.
This commit is contained in:
parent
638ae1664f
commit
d40ebe1ca3
@ -12,114 +12,114 @@
|
||||
#include <random>
|
||||
|
||||
int MLPPHiddenLayer::get_n_hidden() const {
|
||||
return n_hidden;
|
||||
return _n_hidden;
|
||||
}
|
||||
void MLPPHiddenLayer::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_n_hidden = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const {
|
||||
return activation;
|
||||
return _activation;
|
||||
}
|
||||
void MLPPHiddenLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
||||
activation = val;
|
||||
_activation = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_input() {
|
||||
return input;
|
||||
return _input;
|
||||
}
|
||||
void MLPPHiddenLayer::set_input(const Ref<MLPPMatrix> &val) {
|
||||
input = val;
|
||||
_input = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_weights() {
|
||||
return weights;
|
||||
return _weights;
|
||||
}
|
||||
void MLPPHiddenLayer::set_weights(const Ref<MLPPMatrix> &val) {
|
||||
weights = val;
|
||||
_weights = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::MLPPHiddenLayer::get_bias() {
|
||||
return bias;
|
||||
return _bias;
|
||||
}
|
||||
void MLPPHiddenLayer::set_bias(const Ref<MLPPVector> &val) {
|
||||
bias = val;
|
||||
_bias = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_z() {
|
||||
return z;
|
||||
return _z;
|
||||
}
|
||||
void MLPPHiddenLayer::set_z(const Ref<MLPPMatrix> &val) {
|
||||
z = val;
|
||||
_z = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_a() {
|
||||
return a;
|
||||
return _a;
|
||||
}
|
||||
void MLPPHiddenLayer::set_a(const Ref<MLPPMatrix> &val) {
|
||||
a = val;
|
||||
_a = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::get_z_test() {
|
||||
return z_test;
|
||||
return _z_test;
|
||||
}
|
||||
void MLPPHiddenLayer::set_z_test(const Ref<MLPPVector> &val) {
|
||||
z_test = val;
|
||||
_z_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPHiddenLayer::get_a_test() {
|
||||
return a_test;
|
||||
return _a_test;
|
||||
}
|
||||
void MLPPHiddenLayer::set_a_test(const Ref<MLPPVector> &val) {
|
||||
a_test = val;
|
||||
_a_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPHiddenLayer::get_delta() {
|
||||
return delta;
|
||||
return _delta;
|
||||
}
|
||||
void MLPPHiddenLayer::set_delta(const Ref<MLPPMatrix> &val) {
|
||||
delta = val;
|
||||
_delta = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const {
|
||||
return reg;
|
||||
return _reg;
|
||||
}
|
||||
void MLPPHiddenLayer::set_reg(const MLPPReg::RegularizationType val) {
|
||||
reg = val;
|
||||
_reg = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPHiddenLayer::get_lambda() const {
|
||||
return lambda;
|
||||
return _lambda;
|
||||
}
|
||||
void MLPPHiddenLayer::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_lambda = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPHiddenLayer::get_alpha() const {
|
||||
return alpha;
|
||||
return _alpha;
|
||||
}
|
||||
void MLPPHiddenLayer::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_alpha = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const {
|
||||
return weight_init;
|
||||
return _weight_init;
|
||||
}
|
||||
void MLPPHiddenLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
||||
weight_init = val;
|
||||
_weight_init = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
@ -131,13 +131,13 @@ void MLPPHiddenLayer::initialize() {
|
||||
return;
|
||||
}
|
||||
|
||||
weights->resize(Size2i(n_hidden, input->size().x));
|
||||
bias->resize(n_hidden);
|
||||
_weights->resize(Size2i(_n_hidden, _input->size().x));
|
||||
_bias->resize(_n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationm(weights, weight_init);
|
||||
utils.bias_initializationv(bias);
|
||||
utils.weight_initializationm(_weights, _weight_init);
|
||||
utils.bias_initializationv(_bias);
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
@ -150,8 +150,8 @@ void MLPPHiddenLayer::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.mat_vec_addv(alg.matmultm(input, weights), bias);
|
||||
a = avn.run_activation_norm_matrix(activation, z);
|
||||
_z = alg.mat_vec_addv(alg.matmultm(_input, _weights), _bias);
|
||||
_a = avn.run_activation_norm_matrix(_activation, _z);
|
||||
}
|
||||
|
||||
void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
|
||||
@ -162,66 +162,66 @@ void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(weights), x), bias);
|
||||
a_test = avn.run_activation_norm_matrix(activation, z_test);
|
||||
_z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(_weights), x), _bias);
|
||||
_a_test = avn.run_activation_norm_matrix(_activation, _z_test);
|
||||
}
|
||||
|
||||
MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
_n_hidden = p_n_hidden;
|
||||
_activation = p_activation;
|
||||
|
||||
input = p_input;
|
||||
_input = p_input;
|
||||
|
||||
// Regularization Params
|
||||
reg = p_reg;
|
||||
lambda = p_lambda; /* Regularization Parameter */
|
||||
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
_reg = p_reg;
|
||||
_lambda = p_lambda; /* Regularization Parameter */
|
||||
_alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = p_weight_init;
|
||||
_weight_init = p_weight_init;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
_weights.instance();
|
||||
_bias.instance();
|
||||
|
||||
weights->resize(Size2i(n_hidden, input->size().x));
|
||||
bias->resize(n_hidden);
|
||||
_weights->resize(Size2i(_n_hidden, _input->size().x));
|
||||
_bias->resize(_n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationm(weights, weight_init);
|
||||
utils.bias_initializationv(bias);
|
||||
utils.weight_initializationm(_weights, _weight_init);
|
||||
utils.bias_initializationv(_bias);
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPHiddenLayer::MLPPHiddenLayer() {
|
||||
n_hidden = 0;
|
||||
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
_n_hidden = 0;
|
||||
_activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
|
||||
// Regularization Params
|
||||
//reg = 0;
|
||||
lambda = 0; /* Regularization Parameter */
|
||||
alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
_lambda = 0; /* Regularization Parameter */
|
||||
_alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
_weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
_weights.instance();
|
||||
_bias.instance();
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
@ -84,28 +84,28 @@ public:
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
||||
int n_hidden;
|
||||
MLPPActivation::ActivationFunction activation;
|
||||
int _n_hidden;
|
||||
MLPPActivation::ActivationFunction _activation;
|
||||
|
||||
Ref<MLPPMatrix> input;
|
||||
Ref<MLPPMatrix> _input;
|
||||
|
||||
Ref<MLPPMatrix> weights;
|
||||
Ref<MLPPVector> bias;
|
||||
Ref<MLPPMatrix> _weights;
|
||||
Ref<MLPPVector> _bias;
|
||||
|
||||
Ref<MLPPMatrix> z;
|
||||
Ref<MLPPMatrix> a;
|
||||
Ref<MLPPMatrix> _z;
|
||||
Ref<MLPPMatrix> _a;
|
||||
|
||||
Ref<MLPPVector> z_test;
|
||||
Ref<MLPPVector> a_test;
|
||||
Ref<MLPPVector> _z_test;
|
||||
Ref<MLPPVector> _a_test;
|
||||
|
||||
Ref<MLPPMatrix> delta;
|
||||
Ref<MLPPMatrix> _delta;
|
||||
|
||||
// Regularization Params
|
||||
MLPPReg::RegularizationType reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
MLPPReg::RegularizationType _reg;
|
||||
real_t _lambda; /* Regularization Parameter */
|
||||
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
MLPPUtilities::WeightDistributionType _weight_init;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
226
mlpp/mlp/mlp.cpp
226
mlpp/mlp/mlp.cpp
@ -18,55 +18,55 @@
|
||||
#include <random>
|
||||
|
||||
Ref<MLPPMatrix> MLPPMLP::get_input_set() {
|
||||
return input_set;
|
||||
return _input_set;
|
||||
}
|
||||
void MLPPMLP::set_input_set(const Ref<MLPPMatrix> &val) {
|
||||
input_set = val;
|
||||
_input_set = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPMLP::get_output_set() {
|
||||
return output_set;
|
||||
return _output_set;
|
||||
}
|
||||
void MLPPMLP::set_output_set(const Ref<MLPPVector> &val) {
|
||||
output_set = val;
|
||||
_output_set = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
int MLPPMLP::get_n_hidden() {
|
||||
return n_hidden;
|
||||
return _n_hidden;
|
||||
}
|
||||
void MLPPMLP::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_n_hidden = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPMLP::get_lambda() {
|
||||
return lambda;
|
||||
return _lambda;
|
||||
}
|
||||
void MLPPMLP::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_lambda = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPMLP::get_alpha() {
|
||||
return alpha;
|
||||
return _alpha;
|
||||
}
|
||||
void MLPPMLP::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_alpha = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPMLP::get_reg() {
|
||||
return reg;
|
||||
return _reg;
|
||||
}
|
||||
void MLPPMLP::set_reg(const MLPPReg::RegularizationType val) {
|
||||
reg = val;
|
||||
_reg = val;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
@ -88,47 +88,47 @@ void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
|
||||
y_hat->fill(0);
|
||||
_y_hat->fill(0);
|
||||
|
||||
forward_pass();
|
||||
|
||||
while (true) {
|
||||
cost_prev = cost(y_hat, output_set);
|
||||
cost_prev = cost(_y_hat, _output_set);
|
||||
|
||||
// Calculating the errors
|
||||
Ref<MLPPVector> error = alg.subtractionnv(y_hat, output_set);
|
||||
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
|
||||
|
||||
// Calculating the weight/bias gradients for layer 2
|
||||
|
||||
Ref<MLPPVector> D2_1 = alg.mat_vec_multv(alg.transposem(a2), error);
|
||||
Ref<MLPPVector> D2_1 = alg.mat_vec_multv(alg.transposem(_a2), error);
|
||||
|
||||
// weights and bias updation for layer 2
|
||||
weights2->set_from_mlpp_vector(alg.subtractionnv(weights2, alg.scalar_multiplynv(learning_rate / static_cast<real_t>(n), D2_1)));
|
||||
weights2->set_from_mlpp_vector(regularization.reg_weightsv(weights2, lambda, alpha, reg));
|
||||
_weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(learning_rate / static_cast<real_t>(_n), D2_1)));
|
||||
_weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg));
|
||||
|
||||
bias2 -= learning_rate * alg.sum_elementsv(error) / static_cast<real_t>(n);
|
||||
_bias2 -= learning_rate * alg.sum_elementsv(error) / static_cast<real_t>(_n);
|
||||
|
||||
// Calculating the weight/bias for layer 1
|
||||
|
||||
Ref<MLPPMatrix> D1_1 = alg.outer_product(error, weights2);
|
||||
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(alg.transposem(D1_1), avn.sigmoid_derivm(z2));
|
||||
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(input_set), D1_2);
|
||||
Ref<MLPPMatrix> D1_1 = alg.outer_product(error, _weights2);
|
||||
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(alg.transposem(D1_1), avn.sigmoid_derivm(_z2));
|
||||
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(_input_set), D1_2);
|
||||
|
||||
// weight an bias updation for layer 1
|
||||
weights1->set_from_mlpp_matrix(alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate / n, D1_3)));
|
||||
weights1->set_from_mlpp_matrix(regularization.reg_weightsm(weights1, lambda, alpha, reg));
|
||||
_weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate / _n, D1_3)));
|
||||
_weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg));
|
||||
|
||||
bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(learning_rate / n, D1_2)));
|
||||
_bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(learning_rate / _n, D1_2)));
|
||||
|
||||
forward_pass();
|
||||
|
||||
// UI PORTION
|
||||
if (UI) {
|
||||
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, output_set));
|
||||
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
|
||||
PLOG_MSG("Layer 1:");
|
||||
MLPPUtilities::print_ui_mb(weights1, bias1);
|
||||
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||
PLOG_MSG("Layer 2:");
|
||||
MLPPUtilities::print_ui_vb(weights2, bias2);
|
||||
MLPPUtilities::print_ui_vb(_weights2, _bias2);
|
||||
}
|
||||
|
||||
epoch++;
|
||||
@ -150,11 +150,11 @@ void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) {
|
||||
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
|
||||
|
||||
Ref<MLPPVector> input_set_row_tmp;
|
||||
input_set_row_tmp.instance();
|
||||
input_set_row_tmp->resize(input_set->size().x);
|
||||
input_set_row_tmp->resize(_input_set->size().x);
|
||||
|
||||
Ref<MLPPVector> output_set_row_tmp;
|
||||
output_set_row_tmp.instance();
|
||||
@ -172,8 +172,8 @@ void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) {
|
||||
while (true) {
|
||||
int output_Index = distribution(generator);
|
||||
|
||||
input_set->get_row_into_mlpp_vector(output_Index, input_set_row_tmp);
|
||||
real_t output_element = output_set->get_element(output_Index);
|
||||
_input_set->get_row_into_mlpp_vector(output_Index, input_set_row_tmp);
|
||||
real_t output_element = _output_set->get_element(output_Index);
|
||||
output_set_row_tmp->set_element(0, output_element);
|
||||
|
||||
real_t ly_hat = evaluatev(input_set_row_tmp);
|
||||
@ -185,31 +185,31 @@ void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) {
|
||||
// Weight updation for layer 2
|
||||
Ref<MLPPVector> D2_1 = alg.scalar_multiplynv(error, la2);
|
||||
|
||||
weights2->set_from_mlpp_vector(alg.subtractionnv(weights2, alg.scalar_multiplynv(learning_rate, D2_1)));
|
||||
weights2->set_from_mlpp_vector(regularization.reg_weightsv(weights2, lambda, alpha, reg));
|
||||
_weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(learning_rate, D2_1)));
|
||||
_weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg));
|
||||
|
||||
// Bias updation for layer 2
|
||||
bias2 -= learning_rate * error;
|
||||
_bias2 -= learning_rate * error;
|
||||
|
||||
// Weight updation for layer 1
|
||||
Ref<MLPPVector> D1_1 = alg.scalar_multiplynv(error, weights2);
|
||||
Ref<MLPPVector> D1_1 = alg.scalar_multiplynv(error, _weights2);
|
||||
Ref<MLPPVector> D1_2 = alg.hadamard_productnv(D1_1, avn.sigmoid_derivv(lz2));
|
||||
Ref<MLPPMatrix> D1_3 = alg.outer_product(input_set_row_tmp, D1_2);
|
||||
|
||||
weights1->set_from_mlpp_matrix(alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate, D1_3)));
|
||||
weights1->set_from_mlpp_matrix(regularization.reg_weightsm(weights1, lambda, alpha, reg));
|
||||
_weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(learning_rate, D1_3)));
|
||||
_weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg));
|
||||
// Bias updation for layer 1
|
||||
|
||||
bias1->set_from_mlpp_vector(alg.subtractionnv(bias1, alg.scalar_multiplynv(learning_rate, D1_2)));
|
||||
_bias1->set_from_mlpp_vector(alg.subtractionnv(_bias1, alg.scalar_multiplynv(learning_rate, D1_2)));
|
||||
|
||||
ly_hat = evaluatev(input_set_row_tmp);
|
||||
|
||||
if (UI) {
|
||||
MLPPUtilities::cost_info(epoch, cost_prev, cost_prev);
|
||||
PLOG_MSG("Layer 1:");
|
||||
MLPPUtilities::print_ui_mb(weights1, bias1);
|
||||
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||
PLOG_MSG("Layer 2:");
|
||||
MLPPUtilities::print_ui_vb(weights2, bias2);
|
||||
MLPPUtilities::print_ui_vb(_weights2, _bias2);
|
||||
}
|
||||
|
||||
epoch++;
|
||||
@ -237,9 +237,9 @@ void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
la2.instance();
|
||||
|
||||
// Creating the mini-batches
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
int n_mini_batch = _n / mini_batch_size;
|
||||
|
||||
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(input_set, output_set, n_mini_batch);
|
||||
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
|
||||
|
||||
while (true) {
|
||||
for (int i = 0; i < n_mini_batch; i++) {
|
||||
@ -259,34 +259,34 @@ void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
real_t lr_d_cos = learning_rate / static_cast<real_t>(current_output->size());
|
||||
|
||||
// weights and bias updation for layser 2
|
||||
weights2->set_from_mlpp_vector(alg.subtractionnv(weights2, alg.scalar_multiplynv(lr_d_cos, D2_1)));
|
||||
weights2->set_from_mlpp_vector(regularization.reg_weightsv(weights2, lambda, alpha, reg));
|
||||
_weights2->set_from_mlpp_vector(alg.subtractionnv(_weights2, alg.scalar_multiplynv(lr_d_cos, D2_1)));
|
||||
_weights2->set_from_mlpp_vector(regularization.reg_weightsv(_weights2, _lambda, _alpha, _reg));
|
||||
|
||||
// Calculating the bias gradients for layer 2
|
||||
real_t b_gradient = alg.sum_elementsv(error);
|
||||
|
||||
// Bias Updation for layer 2
|
||||
bias2 -= learning_rate * b_gradient / current_output->size();
|
||||
_bias2 -= learning_rate * b_gradient / current_output->size();
|
||||
|
||||
//Calculating the weight/bias for layer 1
|
||||
Ref<MLPPMatrix> D1_1 = alg.outer_product(error, weights2);
|
||||
Ref<MLPPMatrix> D1_1 = alg.outer_product(error, _weights2);
|
||||
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(lz2));
|
||||
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(current_input), D1_2);
|
||||
|
||||
// weight an bias updation for layer 1
|
||||
weights1->set_from_mlpp_matrix(alg.subtractionm(weights1, alg.scalar_multiplym(lr_d_cos, D1_3)));
|
||||
weights1->set_from_mlpp_matrix(regularization.reg_weightsm(weights1, lambda, alpha, reg));
|
||||
_weights1->set_from_mlpp_matrix(alg.subtractionm(_weights1, alg.scalar_multiplym(lr_d_cos, D1_3)));
|
||||
_weights1->set_from_mlpp_matrix(regularization.reg_weightsm(_weights1, _lambda, _alpha, _reg));
|
||||
|
||||
bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(lr_d_cos, D1_2)));
|
||||
_bias1->set_from_mlpp_vector(alg.subtract_matrix_rows(_bias1, alg.scalar_multiplym(lr_d_cos, D1_2)));
|
||||
|
||||
y_hat = evaluatem(current_input);
|
||||
_y_hat = evaluatem(current_input);
|
||||
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, cost(ly_hat, current_output));
|
||||
PLOG_MSG("Layer 1:");
|
||||
MLPPUtilities::print_ui_mb(weights1, bias1);
|
||||
MLPPUtilities::print_ui_mb(_weights1, _bias1);
|
||||
PLOG_MSG("Layer 2:");
|
||||
MLPPUtilities::print_ui_vb(weights2, bias2);
|
||||
MLPPUtilities::print_ui_vb(_weights2, _bias2);
|
||||
}
|
||||
}
|
||||
|
||||
@ -302,7 +302,7 @@ void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
|
||||
real_t MLPPMLP::score() {
|
||||
MLPPUtilities util;
|
||||
return util.performance_vec(y_hat, output_set);
|
||||
return util.performance_vec(_y_hat, _output_set);
|
||||
}
|
||||
|
||||
void MLPPMLP::save(const String &fileName) {
|
||||
@ -322,54 +322,54 @@ void MLPPMLP::initialize() {
|
||||
return;
|
||||
}
|
||||
|
||||
ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0);
|
||||
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid() || _n_hidden == 0);
|
||||
|
||||
n = input_set->size().y;
|
||||
k = input_set->size().x;
|
||||
_n = _input_set->size().y;
|
||||
_k = _input_set->size().x;
|
||||
|
||||
MLPPActivation avn;
|
||||
y_hat->resize(n);
|
||||
_y_hat->resize(_n);
|
||||
|
||||
MLPPUtilities util;
|
||||
|
||||
weights1->resize(Size2i(k, n_hidden));
|
||||
weights2->resize(n_hidden);
|
||||
bias1->resize(n_hidden);
|
||||
_weights1->resize(Size2i(_k, _n_hidden));
|
||||
_weights2->resize(_n_hidden);
|
||||
_bias1->resize(_n_hidden);
|
||||
|
||||
util.weight_initializationm(weights1);
|
||||
util.weight_initializationv(weights2);
|
||||
util.bias_initializationv(bias1);
|
||||
util.weight_initializationm(_weights1);
|
||||
util.weight_initializationv(_weights2);
|
||||
util.bias_initializationv(_bias1);
|
||||
|
||||
bias2 = util.bias_initializationr();
|
||||
_bias2 = util.bias_initializationr();
|
||||
|
||||
z2.instance();
|
||||
a2.instance();
|
||||
_z2.instance();
|
||||
_a2.instance();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
real_t MLPPMLP::cost(const Ref<MLPPVector> &p_y_hat, const Ref<MLPPVector> &p_y) {
|
||||
MLPPReg regularization;
|
||||
class MLPPCost cost;
|
||||
MLPPCost mlpp_cost;
|
||||
|
||||
return cost.log_lossv(p_y_hat, p_y) + regularization.reg_termv(weights2, lambda, alpha, reg) + regularization.reg_termm(weights1, lambda, alpha, reg);
|
||||
return mlpp_cost.log_lossv(p_y_hat, p_y) + regularization.reg_termv(_weights2, _lambda, _alpha, _reg) + regularization.reg_termm(_weights1, _lambda, _alpha, _reg);
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPMLP::evaluatem(const Ref<MLPPMatrix> &X) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
Ref<MLPPMatrix> pz2 = alg.mat_vec_addv(alg.matmultm(X, weights1), bias1);
|
||||
Ref<MLPPMatrix> pz2 = alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1);
|
||||
Ref<MLPPMatrix> pa2 = avn.sigmoid_normm(pz2);
|
||||
|
||||
return avn.sigmoid_normv(alg.scalar_addnv(bias2, alg.mat_vec_multv(pa2, weights2)));
|
||||
return avn.sigmoid_normv(alg.scalar_addnv(_bias2, alg.mat_vec_multv(pa2, _weights2)));
|
||||
}
|
||||
|
||||
void MLPPMLP::propagatem(const Ref<MLPPMatrix> &X, Ref<MLPPMatrix> z2_out, Ref<MLPPMatrix> a2_out) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z2_out->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(X, weights1), bias1));
|
||||
z2_out->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(X, _weights1), _bias1));
|
||||
a2_out->set_from_mlpp_matrix(avn.sigmoid_normm(z2_out));
|
||||
}
|
||||
|
||||
@ -377,17 +377,17 @@ real_t MLPPMLP::evaluatev(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
Ref<MLPPVector> pz2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1);
|
||||
Ref<MLPPVector> pz2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1);
|
||||
Ref<MLPPVector> pa2 = avn.sigmoid_normv(pz2);
|
||||
|
||||
return avn.sigmoid(alg.dotv(weights2, pa2) + bias2);
|
||||
return avn.sigmoid(alg.dotv(_weights2, pa2) + _bias2);
|
||||
}
|
||||
|
||||
void MLPPMLP::propagatev(const Ref<MLPPVector> &x, Ref<MLPPVector> z2_out, Ref<MLPPVector> a2_out) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z2_out->set_from_mlpp_vector(alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1));
|
||||
z2_out->set_from_mlpp_vector(alg.additionnv(alg.mat_vec_multv(alg.transposem(_weights1), x), _bias1));
|
||||
a2_out->set_from_mlpp_vector(avn.sigmoid_normv(z2_out));
|
||||
}
|
||||
|
||||
@ -395,69 +395,69 @@ void MLPPMLP::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z2->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(input_set, weights1), bias1));
|
||||
a2->set_from_mlpp_matrix(avn.sigmoid_normm(z2));
|
||||
_z2->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(_input_set, _weights1), _bias1));
|
||||
_a2->set_from_mlpp_matrix(avn.sigmoid_normm(_z2));
|
||||
|
||||
y_hat->set_from_mlpp_vector(avn.sigmoid_normv(alg.scalar_addnv(bias2, alg.mat_vec_multv(a2, weights2))));
|
||||
_y_hat->set_from_mlpp_vector(avn.sigmoid_normv(alg.scalar_addnv(_bias2, alg.mat_vec_multv(_a2, _weights2))));
|
||||
}
|
||||
|
||||
MLPPMLP::MLPPMLP(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
input_set = p_input_set;
|
||||
output_set = p_output_set;
|
||||
_input_set = p_input_set;
|
||||
_output_set = p_output_set;
|
||||
|
||||
y_hat.instance();
|
||||
_y_hat.instance();
|
||||
|
||||
n_hidden = p_n_hidden;
|
||||
n = input_set->size().y;
|
||||
k = input_set->size().x;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
_n_hidden = p_n_hidden;
|
||||
_n = _input_set->size().y;
|
||||
_k = _input_set->size().x;
|
||||
_reg = p_reg;
|
||||
_lambda = p_lambda;
|
||||
_alpha = p_alpha;
|
||||
|
||||
MLPPActivation avn;
|
||||
y_hat->resize(n);
|
||||
_y_hat->resize(_n);
|
||||
|
||||
MLPPUtilities util;
|
||||
|
||||
weights1.instance();
|
||||
weights1->resize(Size2i(k, n_hidden));
|
||||
_weights1.instance();
|
||||
_weights1->resize(Size2i(_k, _n_hidden));
|
||||
|
||||
weights2.instance();
|
||||
weights2->resize(n_hidden);
|
||||
_weights2.instance();
|
||||
_weights2->resize(_n_hidden);
|
||||
|
||||
bias1.instance();
|
||||
bias1->resize(n_hidden);
|
||||
_bias1.instance();
|
||||
_bias1->resize(_n_hidden);
|
||||
|
||||
util.weight_initializationm(weights1);
|
||||
util.weight_initializationv(weights2);
|
||||
util.bias_initializationv(bias1);
|
||||
util.weight_initializationm(_weights1);
|
||||
util.weight_initializationv(_weights2);
|
||||
util.bias_initializationv(_bias1);
|
||||
|
||||
bias2 = util.bias_initializationr();
|
||||
_bias2 = util.bias_initializationr();
|
||||
|
||||
z2.instance();
|
||||
a2.instance();
|
||||
_z2.instance();
|
||||
_a2.instance();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPMLP::MLPPMLP() {
|
||||
y_hat.instance();
|
||||
_y_hat.instance();
|
||||
|
||||
n_hidden = 0;
|
||||
n = 0;
|
||||
k = 0;
|
||||
reg = MLPPReg::REGULARIZATION_TYPE_NONE;
|
||||
lambda = 0.5;
|
||||
alpha = 0.5;
|
||||
_n_hidden = 0;
|
||||
_n = 0;
|
||||
_k = 0;
|
||||
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
|
||||
_lambda = 0.5;
|
||||
_alpha = 0.5;
|
||||
|
||||
weights1.instance();
|
||||
weights2.instance();
|
||||
bias1.instance();
|
||||
_weights1.instance();
|
||||
_weights2.instance();
|
||||
_bias1.instance();
|
||||
|
||||
bias2 = 0;
|
||||
_bias2 = 0;
|
||||
|
||||
z2.instance();
|
||||
a2.instance();
|
||||
_z2.instance();
|
||||
_a2.instance();
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
@ -77,27 +77,27 @@ protected:
|
||||
|
||||
static void _bind_methods();
|
||||
|
||||
Ref<MLPPMatrix> input_set;
|
||||
Ref<MLPPVector> output_set;
|
||||
Ref<MLPPVector> y_hat;
|
||||
Ref<MLPPMatrix> _input_set;
|
||||
Ref<MLPPVector> _output_set;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
|
||||
Ref<MLPPMatrix> weights1;
|
||||
Ref<MLPPVector> weights2;
|
||||
Ref<MLPPMatrix> _weights1;
|
||||
Ref<MLPPVector> _weights2;
|
||||
|
||||
Ref<MLPPVector> bias1;
|
||||
real_t bias2;
|
||||
Ref<MLPPVector> _bias1;
|
||||
real_t _bias2;
|
||||
|
||||
Ref<MLPPMatrix> z2;
|
||||
Ref<MLPPMatrix> a2;
|
||||
Ref<MLPPMatrix> _z2;
|
||||
Ref<MLPPMatrix> _a2;
|
||||
|
||||
int n;
|
||||
int k;
|
||||
int n_hidden;
|
||||
int _n;
|
||||
int _k;
|
||||
int _n_hidden;
|
||||
|
||||
// Regularization Params
|
||||
MLPPReg::RegularizationType reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
MLPPReg::RegularizationType _reg;
|
||||
real_t _lambda; /* Regularization Parameter */
|
||||
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
@ -9,187 +9,187 @@
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
int MLPPMultiOutputLayer::get_n_output() {
|
||||
return n_output;
|
||||
return _n_output;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_n_output(const int val) {
|
||||
n_output = val;
|
||||
_n_output = val;
|
||||
}
|
||||
|
||||
int MLPPMultiOutputLayer::get_n_hidden() {
|
||||
return n_hidden;
|
||||
return _n_hidden;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_n_hidden = val;
|
||||
}
|
||||
|
||||
MLPPActivation::ActivationFunction MLPPMultiOutputLayer::get_activation() {
|
||||
return activation;
|
||||
return _activation;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
||||
activation = val;
|
||||
_activation = val;
|
||||
}
|
||||
|
||||
MLPPCost::CostTypes MLPPMultiOutputLayer::get_cost() {
|
||||
return cost;
|
||||
return _cost;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_cost(const MLPPCost::CostTypes val) {
|
||||
cost = val;
|
||||
_cost = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_input() {
|
||||
return input;
|
||||
return _input;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_input(const Ref<MLPPMatrix> &val) {
|
||||
input = val;
|
||||
_input = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_weights() {
|
||||
return weights;
|
||||
return _weights;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_weights(const Ref<MLPPMatrix> &val) {
|
||||
weights = val;
|
||||
_weights = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPMultiOutputLayer::get_bias() {
|
||||
return bias;
|
||||
return _bias;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_bias(const Ref<MLPPVector> &val) {
|
||||
bias = val;
|
||||
_bias = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_z() {
|
||||
return z;
|
||||
return _z;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_z(const Ref<MLPPMatrix> &val) {
|
||||
z = val;
|
||||
_z = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_a() {
|
||||
return a;
|
||||
return _a;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_a(const Ref<MLPPMatrix> &val) {
|
||||
a = val;
|
||||
_a = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPMultiOutputLayer::get_z_test() {
|
||||
return z_test;
|
||||
return _z_test;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_z_test(const Ref<MLPPVector> &val) {
|
||||
z_test = val;
|
||||
_z_test = val;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPMultiOutputLayer::get_a_test() {
|
||||
return a_test;
|
||||
return _a_test;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_a_test(const Ref<MLPPVector> &val) {
|
||||
a_test = val;
|
||||
_a_test = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPMultiOutputLayer::get_delta() {
|
||||
return delta;
|
||||
return _delta;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_delta(const Ref<MLPPMatrix> &val) {
|
||||
delta = val;
|
||||
_delta = val;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPMultiOutputLayer::get_reg() {
|
||||
return reg;
|
||||
return _reg;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_reg(const MLPPReg::RegularizationType val) {
|
||||
reg = val;
|
||||
_reg = val;
|
||||
}
|
||||
|
||||
real_t MLPPMultiOutputLayer::get_lambda() {
|
||||
return lambda;
|
||||
return _lambda;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_lambda = val;
|
||||
}
|
||||
|
||||
real_t MLPPMultiOutputLayer::get_alpha() {
|
||||
return alpha;
|
||||
return _alpha;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_alpha = val;
|
||||
}
|
||||
|
||||
MLPPUtilities::WeightDistributionType MLPPMultiOutputLayer::get_weight_init() {
|
||||
return weight_init;
|
||||
return _weight_init;
|
||||
}
|
||||
void MLPPMultiOutputLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
||||
weight_init = val;
|
||||
_weight_init = val;
|
||||
}
|
||||
|
||||
void MLPPMultiOutputLayer::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.mat_vec_addv(alg.matmultm(input, weights), bias);
|
||||
a = avn.run_activation_norm_matrix(activation, z);
|
||||
_z = alg.mat_vec_addv(alg.matmultm(_input, _weights), _bias);
|
||||
_a = avn.run_activation_norm_matrix(_activation, _z);
|
||||
}
|
||||
|
||||
void MLPPMultiOutputLayer::test(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(weights), x), bias);
|
||||
a_test = avn.run_activation_norm_vector(activation, z_test);
|
||||
_z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(_weights), x), _bias);
|
||||
_a_test = avn.run_activation_norm_vector(_activation, _z_test);
|
||||
}
|
||||
|
||||
MLPPMultiOutputLayer::MLPPMultiOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
_n_hidden = p_n_hidden;
|
||||
_activation = p_activation;
|
||||
|
||||
input = p_input;
|
||||
_input = p_input;
|
||||
|
||||
// Regularization Params
|
||||
reg = p_reg;
|
||||
lambda = p_lambda; /* Regularization Parameter */
|
||||
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
_reg = p_reg;
|
||||
_lambda = p_lambda; /* Regularization Parameter */
|
||||
_alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = p_weight_init;
|
||||
_weight_init = p_weight_init;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
_weights.instance();
|
||||
_bias.instance();
|
||||
|
||||
weights->resize(Size2i(n_hidden, n_output));
|
||||
bias->resize(n_output);
|
||||
_weights->resize(Size2i(_n_hidden, _n_output));
|
||||
_bias->resize(_n_output);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationm(weights, weight_init);
|
||||
utils.bias_initializationv(bias);
|
||||
utils.weight_initializationm(_weights, _weight_init);
|
||||
utils.bias_initializationv(_bias);
|
||||
}
|
||||
|
||||
MLPPMultiOutputLayer::MLPPMultiOutputLayer() {
|
||||
n_hidden = 0;
|
||||
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
_n_hidden = 0;
|
||||
_activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
|
||||
// Regularization Params
|
||||
//reg = 0;
|
||||
lambda = 0; /* Regularization Parameter */
|
||||
alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
_lambda = 0; /* Regularization Parameter */
|
||||
_alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
_weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias.instance();
|
||||
_weights.instance();
|
||||
_bias.instance();
|
||||
}
|
||||
MLPPMultiOutputLayer::~MLPPMultiOutputLayer() {
|
||||
}
|
||||
|
@ -84,30 +84,30 @@ public:
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
||||
int n_output;
|
||||
int n_hidden;
|
||||
MLPPActivation::ActivationFunction activation;
|
||||
MLPPCost::CostTypes cost;
|
||||
int _n_output;
|
||||
int _n_hidden;
|
||||
MLPPActivation::ActivationFunction _activation;
|
||||
MLPPCost::CostTypes _cost;
|
||||
|
||||
Ref<MLPPMatrix> input;
|
||||
Ref<MLPPMatrix> _input;
|
||||
|
||||
Ref<MLPPMatrix> weights;
|
||||
Ref<MLPPVector> bias;
|
||||
Ref<MLPPMatrix> _weights;
|
||||
Ref<MLPPVector> _bias;
|
||||
|
||||
Ref<MLPPMatrix> z;
|
||||
Ref<MLPPMatrix> a;
|
||||
Ref<MLPPMatrix> _z;
|
||||
Ref<MLPPMatrix> _a;
|
||||
|
||||
Ref<MLPPVector> z_test;
|
||||
Ref<MLPPVector> a_test;
|
||||
Ref<MLPPVector> _z_test;
|
||||
Ref<MLPPVector> _a_test;
|
||||
|
||||
Ref<MLPPMatrix> delta;
|
||||
Ref<MLPPMatrix> _delta;
|
||||
|
||||
// Regularization Params
|
||||
MLPPReg::RegularizationType reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
MLPPReg::RegularizationType _reg;
|
||||
real_t _lambda; /* Regularization Parameter */
|
||||
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
MLPPUtilities::WeightDistributionType _weight_init;
|
||||
};
|
||||
|
||||
#endif /* MultiOutputLayer_hpp */
|
||||
|
@ -9,121 +9,121 @@
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
int MLPPOutputLayer::get_n_hidden() {
|
||||
return n_hidden;
|
||||
return _n_hidden;
|
||||
}
|
||||
void MLPPOutputLayer::set_n_hidden(const int val) {
|
||||
n_hidden = val;
|
||||
_n_hidden = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPActivation::ActivationFunction MLPPOutputLayer::get_activation() {
|
||||
return activation;
|
||||
return _activation;
|
||||
}
|
||||
void MLPPOutputLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
||||
activation = val;
|
||||
_activation = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPCost::CostTypes MLPPOutputLayer::get_cost() {
|
||||
return cost;
|
||||
return _cost;
|
||||
}
|
||||
void MLPPOutputLayer::set_cost(const MLPPCost::CostTypes val) {
|
||||
cost = val;
|
||||
_cost = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPOutputLayer::get_input() {
|
||||
return input;
|
||||
return _input;
|
||||
}
|
||||
void MLPPOutputLayer::set_input(const Ref<MLPPMatrix> &val) {
|
||||
input = val;
|
||||
_input = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_weights() {
|
||||
return weights;
|
||||
return _weights;
|
||||
}
|
||||
void MLPPOutputLayer::set_weights(const Ref<MLPPVector> &val) {
|
||||
weights = val;
|
||||
_weights = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPOutputLayer::MLPPOutputLayer::get_bias() {
|
||||
return bias;
|
||||
return _bias;
|
||||
}
|
||||
void MLPPOutputLayer::set_bias(const real_t val) {
|
||||
bias = val;
|
||||
_bias = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_z() {
|
||||
return z;
|
||||
return _z;
|
||||
}
|
||||
void MLPPOutputLayer::set_z(const Ref<MLPPVector> &val) {
|
||||
z = val;
|
||||
_z = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_a() {
|
||||
return a;
|
||||
return _a;
|
||||
}
|
||||
void MLPPOutputLayer::set_a(const Ref<MLPPVector> &val) {
|
||||
a = val;
|
||||
_a = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_z_test() {
|
||||
return z_test;
|
||||
return _z_test;
|
||||
}
|
||||
void MLPPOutputLayer::set_z_test(const Ref<MLPPVector> &val) {
|
||||
z_test = val;
|
||||
_z_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_a_test() {
|
||||
return a_test;
|
||||
return _a_test;
|
||||
}
|
||||
void MLPPOutputLayer::set_a_test(const Ref<MLPPVector> &val) {
|
||||
a_test = val;
|
||||
_a_test = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPOutputLayer::get_delta() {
|
||||
return delta;
|
||||
return _delta;
|
||||
}
|
||||
void MLPPOutputLayer::set_delta(const Ref<MLPPVector> &val) {
|
||||
delta = val;
|
||||
_delta = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPReg::RegularizationType MLPPOutputLayer::get_reg() {
|
||||
return reg;
|
||||
return _reg;
|
||||
}
|
||||
void MLPPOutputLayer::set_reg(const MLPPReg::RegularizationType val) {
|
||||
reg = val;
|
||||
_reg = val;
|
||||
}
|
||||
|
||||
real_t MLPPOutputLayer::get_lambda() {
|
||||
return lambda;
|
||||
return _lambda;
|
||||
}
|
||||
void MLPPOutputLayer::set_lambda(const real_t val) {
|
||||
lambda = val;
|
||||
_lambda = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
real_t MLPPOutputLayer::get_alpha() {
|
||||
return alpha;
|
||||
return _alpha;
|
||||
}
|
||||
void MLPPOutputLayer::set_alpha(const real_t val) {
|
||||
alpha = val;
|
||||
_alpha = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
MLPPUtilities::WeightDistributionType MLPPOutputLayer::get_weight_init() {
|
||||
return weight_init;
|
||||
return _weight_init;
|
||||
}
|
||||
void MLPPOutputLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
||||
weight_init = val;
|
||||
_weight_init = val;
|
||||
_initialized = false;
|
||||
}
|
||||
|
||||
@ -135,12 +135,12 @@ void MLPPOutputLayer::initialize() {
|
||||
return;
|
||||
}
|
||||
|
||||
weights->resize(n_hidden);
|
||||
_weights->resize(_n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationv(weights, weight_init);
|
||||
bias = utils.bias_initializationr();
|
||||
utils.weight_initializationv(_weights, _weight_init);
|
||||
_bias = utils.bias_initializationr();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
@ -153,8 +153,8 @@ void MLPPOutputLayer::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.scalar_addnv(bias, alg.mat_vec_multv(input, weights));
|
||||
a = avn.run_activation_norm_vector(activation, z);
|
||||
_z = alg.scalar_addnv(_bias, alg.mat_vec_multv(_input, _weights));
|
||||
_a = avn.run_activation_norm_vector(_activation, _z);
|
||||
}
|
||||
|
||||
void MLPPOutputLayer::test(const Ref<MLPPVector> &x) {
|
||||
@ -165,65 +165,65 @@ void MLPPOutputLayer::test(const Ref<MLPPVector> &x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z_test = alg.dotv(weights, x) + bias;
|
||||
a_test = avn.run_activation_norm_vector(activation, z_test);
|
||||
_z_test = alg.dotv(_weights, x) + _bias;
|
||||
_a_test = avn.run_activation_norm_vector(_activation, _z_test);
|
||||
}
|
||||
|
||||
MLPPOutputLayer::MLPPOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
_n_hidden = p_n_hidden;
|
||||
_activation = p_activation;
|
||||
|
||||
input = p_input;
|
||||
_input = p_input;
|
||||
|
||||
// Regularization Params
|
||||
reg = p_reg;
|
||||
lambda = p_lambda; /* Regularization Parameter */
|
||||
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
_reg = p_reg;
|
||||
_lambda = p_lambda; /* Regularization Parameter */
|
||||
_alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = p_weight_init;
|
||||
_weight_init = p_weight_init;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias = 0;
|
||||
_weights.instance();
|
||||
_bias = 0;
|
||||
|
||||
weights->resize(n_hidden);
|
||||
_weights->resize(_n_hidden);
|
||||
|
||||
MLPPUtilities utils;
|
||||
|
||||
utils.weight_initializationv(weights, weight_init);
|
||||
bias = utils.bias_initializationr();
|
||||
utils.weight_initializationv(_weights, _weight_init);
|
||||
_bias = utils.bias_initializationr();
|
||||
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
MLPPOutputLayer::MLPPOutputLayer() {
|
||||
n_hidden = 0;
|
||||
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
_n_hidden = 0;
|
||||
_activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
||||
|
||||
// Regularization Params
|
||||
//reg = 0;
|
||||
lambda = 0; /* Regularization Parameter */
|
||||
alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
_lambda = 0; /* Regularization Parameter */
|
||||
_alpha = 0; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
_weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
||||
|
||||
z.instance();
|
||||
a.instance();
|
||||
_z.instance();
|
||||
_a.instance();
|
||||
|
||||
z_test.instance();
|
||||
a_test.instance();
|
||||
_z_test.instance();
|
||||
_a_test.instance();
|
||||
|
||||
delta.instance();
|
||||
_delta.instance();
|
||||
|
||||
weights.instance();
|
||||
bias = 0;
|
||||
_weights.instance();
|
||||
_bias = 0;
|
||||
|
||||
_initialized = false;
|
||||
}
|
||||
|
@ -84,29 +84,29 @@ public:
|
||||
protected:
|
||||
static void _bind_methods();
|
||||
|
||||
int n_hidden;
|
||||
MLPPActivation::ActivationFunction activation;
|
||||
MLPPCost::CostTypes cost;
|
||||
int _n_hidden;
|
||||
MLPPActivation::ActivationFunction _activation;
|
||||
MLPPCost::CostTypes _cost;
|
||||
|
||||
Ref<MLPPMatrix> input;
|
||||
Ref<MLPPMatrix> _input;
|
||||
|
||||
Ref<MLPPVector> weights;
|
||||
real_t bias;
|
||||
Ref<MLPPVector> _weights;
|
||||
real_t _bias;
|
||||
|
||||
Ref<MLPPVector> z;
|
||||
Ref<MLPPVector> a;
|
||||
Ref<MLPPVector> _z;
|
||||
Ref<MLPPVector> _a;
|
||||
|
||||
Ref<MLPPVector> z_test;
|
||||
Ref<MLPPVector> a_test;
|
||||
Ref<MLPPVector> _z_test;
|
||||
Ref<MLPPVector> _a_test;
|
||||
|
||||
Ref<MLPPVector> delta;
|
||||
Ref<MLPPVector> _delta;
|
||||
|
||||
// Regularization Params
|
||||
MLPPReg::RegularizationType reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
MLPPReg::RegularizationType _reg;
|
||||
real_t _lambda; /* Regularization Parameter */
|
||||
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
MLPPUtilities::WeightDistributionType _weight_init;
|
||||
|
||||
bool _initialized;
|
||||
};
|
||||
|
@ -17,29 +17,29 @@
|
||||
#include "core/object/method_bind_ext.gen.inc"
|
||||
|
||||
Ref<MLPPMatrix> MLPPWGAN::get_output_set() {
|
||||
return output_set;
|
||||
return _output_set;
|
||||
}
|
||||
void MLPPWGAN::set_output_set(const Ref<MLPPMatrix> &val) {
|
||||
output_set = val;
|
||||
_output_set = val;
|
||||
|
||||
n = 0;
|
||||
_n = 0;
|
||||
|
||||
if (output_set.is_valid()) {
|
||||
n = output_set->size().y;
|
||||
if (_output_set.is_valid()) {
|
||||
_n = _output_set->size().y;
|
||||
}
|
||||
}
|
||||
|
||||
int MLPPWGAN::get_k() const {
|
||||
return k;
|
||||
return _k;
|
||||
}
|
||||
void MLPPWGAN::set_k(const int val) {
|
||||
k = val;
|
||||
_k = val;
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPWGAN::generate_example(int n) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
return model_set_test_generator(alg.gaussian_noise(n, k));
|
||||
return model_set_test_generator(alg.gaussian_noise(n, _k));
|
||||
}
|
||||
|
||||
void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
@ -53,7 +53,7 @@ void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
const int CRITIC_INTERATIONS = 5; // Wasserstein GAN specific parameter.
|
||||
|
||||
while (true) {
|
||||
cost_prev = cost(y_hat, alg.onevecv(n));
|
||||
cost_prev = cost(_y_hat, alg.onevecv(_n));
|
||||
|
||||
Ref<MLPPMatrix> generator_input_set;
|
||||
Ref<MLPPMatrix> discriminator_input_set;
|
||||
@ -64,38 +64,38 @@ void MLPPWGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
|
||||
|
||||
// Training of the discriminator.
|
||||
for (int i = 0; i < CRITIC_INTERATIONS; i++) {
|
||||
generator_input_set = alg.gaussian_noise(n, k);
|
||||
generator_input_set = alg.gaussian_noise(_n, _k);
|
||||
discriminator_input_set->set_from_mlpp_matrix(model_set_test_generator(generator_input_set));
|
||||
discriminator_input_set->add_rows_mlpp_matrix(output_set); // Fake + real inputs.
|
||||
discriminator_input_set->add_rows_mlpp_matrix(_output_set); // Fake + real inputs.
|
||||
|
||||
ly_hat = model_set_test_discriminator(discriminator_input_set);
|
||||
loutput_set = alg.scalar_multiplynv(-1, alg.onevecv(n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1
|
||||
Ref<MLPPVector> output_set_real = alg.onevecv(n);
|
||||
loutput_set = alg.scalar_multiplynv(-1, alg.onevecv(_n)); // WGAN changes y_i = 1 and y_i = 0 to y_i = 1 and y_i = -1
|
||||
Ref<MLPPVector> output_set_real = alg.onevecv(_n);
|
||||
loutput_set->add_mlpp_vector(output_set_real); // Fake + real output scores.
|
||||
|
||||
DiscriminatorGradientResult discriminator_gradient_results = compute_discriminator_gradients(ly_hat, loutput_set);
|
||||
Vector<Ref<MLPPMatrix>> cumulative_discriminator_hidden_layer_w_grad = discriminator_gradient_results.cumulative_hidden_layer_w_grad;
|
||||
Ref<MLPPVector> output_discriminator_w_grad = discriminator_gradient_results.output_w_grad;
|
||||
|
||||
cumulative_discriminator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / n, cumulative_discriminator_hidden_layer_w_grad);
|
||||
output_discriminator_w_grad = alg.scalar_multiplynv(learning_rate / n, output_discriminator_w_grad);
|
||||
cumulative_discriminator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, cumulative_discriminator_hidden_layer_w_grad);
|
||||
output_discriminator_w_grad = alg.scalar_multiplynv(learning_rate / _n, output_discriminator_w_grad);
|
||||
update_discriminator_parameters(cumulative_discriminator_hidden_layer_w_grad, output_discriminator_w_grad, learning_rate);
|
||||
}
|
||||
|
||||
// Training of the generator.
|
||||
generator_input_set = alg.gaussian_noise(n, k);
|
||||
generator_input_set = alg.gaussian_noise(_n, _k);
|
||||
discriminator_input_set->set_from_mlpp_matrix(model_set_test_generator(generator_input_set));
|
||||
ly_hat = model_set_test_discriminator(discriminator_input_set);
|
||||
loutput_set = alg.onevecv(n);
|
||||
loutput_set = alg.onevecv(_n);
|
||||
|
||||
Vector<Ref<MLPPMatrix>> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(y_hat, loutput_set);
|
||||
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / n, cumulative_generator_hidden_layer_w_grad);
|
||||
Vector<Ref<MLPPMatrix>> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(_y_hat, loutput_set);
|
||||
cumulative_generator_hidden_layer_w_grad = alg.scalar_multiply_vm(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
|
||||
update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate);
|
||||
|
||||
forward_pass();
|
||||
|
||||
if (ui) {
|
||||
handle_ui(epoch, cost_prev, y_hat, alg.onevecv(n));
|
||||
handle_ui(epoch, cost_prev, _y_hat, alg.onevecv(_n));
|
||||
}
|
||||
|
||||
epoch++;
|
||||
@ -109,7 +109,7 @@ real_t MLPPWGAN::score() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPUtilities util;
|
||||
forward_pass();
|
||||
return util.performance_vec(y_hat, alg.onevecv(n));
|
||||
return util.performance_vec(_y_hat, alg.onevecv(_n));
|
||||
}
|
||||
|
||||
void MLPPWGAN::save(const String &file_name) {
|
||||
@ -141,81 +141,81 @@ void MLPPWGAN::add_layer(int n_hidden, MLPPActivation::ActivationFunction activa
|
||||
layer->set_lambda(lambda);
|
||||
layer->set_alpha(alpha);
|
||||
|
||||
if (network.empty()) {
|
||||
layer->set_input(alg.gaussian_noise(n, k));
|
||||
if (_network.empty()) {
|
||||
layer->set_input(alg.gaussian_noise(_n, _k));
|
||||
} else {
|
||||
layer->set_input(network.write[network.size() - 1]->get_a());
|
||||
layer->set_input(_network.write[_network.size() - 1]->get_a());
|
||||
}
|
||||
|
||||
network.push_back(layer);
|
||||
_network.push_back(layer);
|
||||
layer->forward_pass();
|
||||
}
|
||||
|
||||
void MLPPWGAN::add_output_layer(MLPPUtilities::WeightDistributionType weight_init, MLPPReg::RegularizationType reg, real_t lambda, real_t alpha) {
|
||||
ERR_FAIL_COND(network.empty());
|
||||
ERR_FAIL_COND(_network.empty());
|
||||
|
||||
if (!output_layer.is_valid()) {
|
||||
output_layer.instance();
|
||||
if (!_output_layer.is_valid()) {
|
||||
_output_layer.instance();
|
||||
}
|
||||
|
||||
output_layer->set_n_hidden(network[network.size() - 1]->get_n_hidden());
|
||||
output_layer->set_activation(MLPPActivation::ACTIVATION_FUNCTION_LINEAR);
|
||||
output_layer->set_cost(MLPPCost::COST_TYPE_WASSERSTEIN_LOSS);
|
||||
output_layer->set_input(network.write[network.size() - 1]->get_a());
|
||||
output_layer->set_weight_init(weight_init);
|
||||
output_layer->set_lambda(lambda);
|
||||
output_layer->set_alpha(alpha);
|
||||
_output_layer->set_n_hidden(_network[_network.size() - 1]->get_n_hidden());
|
||||
_output_layer->set_activation(MLPPActivation::ACTIVATION_FUNCTION_LINEAR);
|
||||
_output_layer->set_cost(MLPPCost::COST_TYPE_WASSERSTEIN_LOSS);
|
||||
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
||||
_output_layer->set_weight_init(weight_init);
|
||||
_output_layer->set_lambda(lambda);
|
||||
_output_layer->set_alpha(alpha);
|
||||
}
|
||||
|
||||
MLPPWGAN::MLPPWGAN(real_t p_k, const Ref<MLPPMatrix> &p_output_set) {
|
||||
output_set = p_output_set;
|
||||
n = p_output_set->size().y;
|
||||
k = p_k;
|
||||
_output_set = p_output_set;
|
||||
_n = p_output_set->size().y;
|
||||
_k = p_k;
|
||||
|
||||
y_hat.instance();
|
||||
_y_hat.instance();
|
||||
}
|
||||
|
||||
MLPPWGAN::MLPPWGAN() {
|
||||
n = 0;
|
||||
k = 0;
|
||||
_n = 0;
|
||||
_k = 0;
|
||||
|
||||
y_hat.instance();
|
||||
_y_hat.instance();
|
||||
}
|
||||
|
||||
MLPPWGAN::~MLPPWGAN() {
|
||||
}
|
||||
|
||||
Ref<MLPPMatrix> MLPPWGAN::model_set_test_generator(const Ref<MLPPMatrix> &X) {
|
||||
if (!network.empty()) {
|
||||
network.write[0]->set_input(X);
|
||||
network.write[0]->forward_pass();
|
||||
if (!_network.empty()) {
|
||||
_network.write[0]->set_input(X);
|
||||
_network.write[0]->forward_pass();
|
||||
|
||||
for (int i = 1; i <= network.size() / 2; ++i) {
|
||||
network.write[i]->set_input(network.write[i - 1]->get_a());
|
||||
network.write[i]->forward_pass();
|
||||
for (int i = 1; i <= _network.size() / 2; ++i) {
|
||||
_network.write[i]->set_input(_network.write[i - 1]->get_a());
|
||||
_network.write[i]->forward_pass();
|
||||
}
|
||||
}
|
||||
|
||||
return network.write[network.size() / 2]->get_a();
|
||||
return _network.write[_network.size() / 2]->get_a();
|
||||
}
|
||||
|
||||
Ref<MLPPVector> MLPPWGAN::model_set_test_discriminator(const Ref<MLPPMatrix> &X) {
|
||||
if (!network.empty()) {
|
||||
for (int i = network.size() / 2 + 1; i < network.size(); i++) {
|
||||
if (i == network.size() / 2 + 1) {
|
||||
network.write[i]->set_input(X);
|
||||
if (!_network.empty()) {
|
||||
for (int i = _network.size() / 2 + 1; i < _network.size(); i++) {
|
||||
if (i == _network.size() / 2 + 1) {
|
||||
_network.write[i]->set_input(X);
|
||||
} else {
|
||||
network.write[i]->set_input(network.write[i - 1]->get_a());
|
||||
_network.write[i]->set_input(_network.write[i - 1]->get_a());
|
||||
}
|
||||
network.write[i]->forward_pass();
|
||||
_network.write[i]->forward_pass();
|
||||
}
|
||||
|
||||
output_layer->set_input(network.write[network.size() - 1]->get_a());
|
||||
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
||||
}
|
||||
|
||||
output_layer->forward_pass();
|
||||
_output_layer->forward_pass();
|
||||
|
||||
return output_layer->get_a();
|
||||
return _output_layer->get_a();
|
||||
}
|
||||
|
||||
real_t MLPPWGAN::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
|
||||
@ -224,60 +224,60 @@ real_t MLPPWGAN::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
|
||||
|
||||
real_t total_reg_term = 0;
|
||||
|
||||
for (int i = 0; i < network.size() - 1; ++i) {
|
||||
Ref<MLPPHiddenLayer> layer = network[i];
|
||||
for (int i = 0; i < _network.size() - 1; ++i) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[i];
|
||||
|
||||
total_reg_term += regularization.reg_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg());
|
||||
}
|
||||
|
||||
total_reg_term += regularization.reg_termv(output_layer->get_weights(), output_layer->get_lambda(), output_layer->get_alpha(), output_layer->get_reg());
|
||||
total_reg_term += regularization.reg_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg());
|
||||
|
||||
return mlpp_cost.run_cost_norm_vector(output_layer->get_cost(), y_hat, y) + total_reg_term;
|
||||
return mlpp_cost.run_cost_norm_vector(_output_layer->get_cost(), y_hat, y) + total_reg_term;
|
||||
}
|
||||
|
||||
void MLPPWGAN::forward_pass() {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
if (!network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = network[0];
|
||||
if (!_network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[0];
|
||||
|
||||
layer->set_input(alg.gaussian_noise(n, k));
|
||||
layer->set_input(alg.gaussian_noise(_n, _k));
|
||||
layer->forward_pass();
|
||||
|
||||
for (int i = 1; i < network.size(); i++) {
|
||||
layer = network[i];
|
||||
for (int i = 1; i < _network.size(); i++) {
|
||||
layer = _network[i];
|
||||
|
||||
layer->set_input(network.write[i - 1]->get_a());
|
||||
layer->set_input(_network.write[i - 1]->get_a());
|
||||
layer->forward_pass();
|
||||
}
|
||||
|
||||
output_layer->set_input(network.write[network.size() - 1]->get_a());
|
||||
_output_layer->set_input(_network.write[_network.size() - 1]->get_a());
|
||||
} else { // Should never happen, though.
|
||||
output_layer->set_input(alg.gaussian_noise(n, k));
|
||||
_output_layer->set_input(alg.gaussian_noise(_n, _k));
|
||||
}
|
||||
|
||||
output_layer->forward_pass();
|
||||
_output_layer->forward_pass();
|
||||
|
||||
y_hat->set_from_mlpp_vector(output_layer->get_a());
|
||||
_y_hat->set_from_mlpp_vector(_output_layer->get_a());
|
||||
}
|
||||
|
||||
void MLPPWGAN::update_discriminator_parameters(Vector<Ref<MLPPMatrix>> hidden_layer_updations, const Ref<MLPPVector> &output_layer_updation, real_t learning_rate) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
output_layer->set_weights(alg.subtractionnv(output_layer->get_weights(), output_layer_updation));
|
||||
output_layer->set_bias(output_layer->get_bias() - learning_rate * alg.sum_elementsv(output_layer->get_delta()) / n);
|
||||
_output_layer->set_weights(alg.subtractionnv(_output_layer->get_weights(), output_layer_updation));
|
||||
_output_layer->set_bias(_output_layer->get_bias() - learning_rate * alg.sum_elementsv(_output_layer->get_delta()) / _n);
|
||||
|
||||
if (!network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = network[network.size() - 1];
|
||||
if (!_network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
||||
|
||||
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[0]));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / n, layer->get_delta())));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / _n, layer->get_delta())));
|
||||
|
||||
for (int i = network.size() - 2; i > network.size() / 2; i--) {
|
||||
layer = network[i];
|
||||
for (int i = _network.size() - 2; i > _network.size() / 2; i--) {
|
||||
layer = _network[i];
|
||||
|
||||
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[(network.size() - 2) - i + 1]));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / n, layer->get_delta())));
|
||||
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[(_network.size() - 2) - i + 1]));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / _n, layer->get_delta())));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -285,14 +285,14 @@ void MLPPWGAN::update_discriminator_parameters(Vector<Ref<MLPPMatrix>> hidden_la
|
||||
void MLPPWGAN::update_generator_parameters(Vector<Ref<MLPPMatrix>> hidden_layer_updations, real_t learning_rate) {
|
||||
MLPPLinAlg alg;
|
||||
|
||||
if (!network.empty()) {
|
||||
for (int i = network.size() / 2; i >= 0; i--) {
|
||||
Ref<MLPPHiddenLayer> layer = network[i];
|
||||
if (!_network.empty()) {
|
||||
for (int i = _network.size() / 2; i >= 0; i--) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[i];
|
||||
|
||||
//std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl;
|
||||
//std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl;
|
||||
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[(network.size() - 2) - i + 1]));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / n, layer->get_delta())));
|
||||
layer->set_weights(alg.subtractionm(layer->get_weights(), hidden_layer_updations[(_network.size() - 2) - i + 1]));
|
||||
layer->set_bias(alg.subtract_matrix_rows(layer->get_bias(), alg.scalar_multiplym(learning_rate / _n, layer->get_delta())));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -305,15 +305,15 @@ MLPPWGAN::DiscriminatorGradientResult MLPPWGAN::compute_discriminator_gradients(
|
||||
|
||||
DiscriminatorGradientResult data;
|
||||
|
||||
output_layer->set_delta(alg.hadamard_productnv(mlpp_cost.run_cost_deriv_vector(output_layer->get_cost(), y_hat, output_set), avn.run_activation_deriv_vector(output_layer->get_activation(), output_layer->get_z())));
|
||||
_output_layer->set_delta(alg.hadamard_productnv(mlpp_cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, output_set), avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z())));
|
||||
|
||||
data.output_w_grad = alg.mat_vec_multv(alg.transposem(output_layer->get_input()), output_layer->get_delta());
|
||||
data.output_w_grad = alg.additionnv(data.output_w_grad, regularization.reg_deriv_termv(output_layer->get_weights(), output_layer->get_lambda(), output_layer->get_alpha(), output_layer->get_reg()));
|
||||
data.output_w_grad = alg.mat_vec_multv(alg.transposem(_output_layer->get_input()), _output_layer->get_delta());
|
||||
data.output_w_grad = alg.additionnv(data.output_w_grad, regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
|
||||
|
||||
if (!network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = network[network.size() - 1];
|
||||
if (!_network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
||||
|
||||
layer->set_delta(alg.hadamard_productm(alg.outer_product(output_layer->get_delta(), output_layer->get_weights()), avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
|
||||
layer->set_delta(alg.hadamard_productm(alg.outer_product(_output_layer->get_delta(), _output_layer->get_weights()), avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
|
||||
|
||||
Ref<MLPPMatrix> hidden_layer_w_grad = alg.matmultm(alg.transposem(layer->get_input()), layer->get_delta());
|
||||
|
||||
@ -322,9 +322,9 @@ MLPPWGAN::DiscriminatorGradientResult MLPPWGAN::compute_discriminator_gradients(
|
||||
//std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl;
|
||||
//std::cout << "WEIGHTS SECOND:" << layer.weights.size() << "x" << layer.weights[0].size() << std::endl;
|
||||
|
||||
for (int i = network.size() - 2; i > network.size() / 2; i--) {
|
||||
layer = network[i];
|
||||
Ref<MLPPHiddenLayer> next_layer = network[i + 1];
|
||||
for (int i = _network.size() - 2; i > _network.size() / 2; i--) {
|
||||
layer = _network[i];
|
||||
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
|
||||
|
||||
layer->set_delta(alg.hadamard_productm(alg.matmultm(next_layer->get_delta(), alg.transposem(next_layer->get_weights())), avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z())));
|
||||
|
||||
@ -345,26 +345,26 @@ Vector<Ref<MLPPMatrix>> MLPPWGAN::compute_generator_gradients(const Ref<MLPPVect
|
||||
|
||||
Vector<Ref<MLPPMatrix>> cumulative_hidden_layer_w_grad; // Tensor containing ALL hidden grads.
|
||||
|
||||
Ref<MLPPVector> cost_deriv_vector = cost.run_cost_deriv_vector(output_layer->get_cost(), y_hat, output_set);
|
||||
Ref<MLPPVector> activation_deriv_vector = avn.run_activation_deriv_vector(output_layer->get_activation(), output_layer->get_z());
|
||||
Ref<MLPPVector> cost_deriv_vector = cost.run_cost_deriv_vector(_output_layer->get_cost(), y_hat, output_set);
|
||||
Ref<MLPPVector> activation_deriv_vector = avn.run_activation_deriv_vector(_output_layer->get_activation(), _output_layer->get_z());
|
||||
|
||||
output_layer->set_delta(alg.hadamard_productnv(cost_deriv_vector, activation_deriv_vector));
|
||||
_output_layer->set_delta(alg.hadamard_productnv(cost_deriv_vector, activation_deriv_vector));
|
||||
|
||||
Ref<MLPPVector> output_w_grad = alg.mat_vec_multv(alg.transposem(output_layer->get_input()), output_layer->get_delta());
|
||||
output_w_grad = alg.additionnv(output_w_grad, regularization.reg_deriv_termv(output_layer->get_weights(), output_layer->get_lambda(), output_layer->get_alpha(), output_layer->get_reg()));
|
||||
Ref<MLPPVector> output_w_grad = alg.mat_vec_multv(alg.transposem(_output_layer->get_input()), _output_layer->get_delta());
|
||||
output_w_grad = alg.additionnv(output_w_grad, regularization.reg_deriv_termv(_output_layer->get_weights(), _output_layer->get_lambda(), _output_layer->get_alpha(), _output_layer->get_reg()));
|
||||
|
||||
if (!network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = network[network.size() - 1];
|
||||
if (!_network.empty()) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[_network.size() - 1];
|
||||
|
||||
Ref<MLPPMatrix> activation_deriv_matrix = avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z());
|
||||
layer->set_delta(alg.hadamard_productm(alg.outer_product(output_layer->get_delta(), output_layer->get_weights()), activation_deriv_matrix));
|
||||
layer->set_delta(alg.hadamard_productm(alg.outer_product(_output_layer->get_delta(), _output_layer->get_weights()), activation_deriv_matrix));
|
||||
|
||||
Ref<MLPPMatrix> hidden_layer_w_grad = alg.matmultm(alg.transposem(layer->get_input()), layer->get_delta());
|
||||
cumulative_hidden_layer_w_grad.push_back(alg.additionm(hidden_layer_w_grad, regularization.reg_deriv_termm(layer->get_weights(), layer->get_lambda(), layer->get_alpha(), layer->get_reg()))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
||||
|
||||
for (int i = network.size() - 2; i >= 0; i--) {
|
||||
layer = network[i];
|
||||
Ref<MLPPHiddenLayer> next_layer = network[i + 1];
|
||||
for (int i = _network.size() - 2; i >= 0; i--) {
|
||||
layer = _network[i];
|
||||
Ref<MLPPHiddenLayer> next_layer = _network[i + 1];
|
||||
|
||||
activation_deriv_matrix = avn.run_activation_deriv_matrix(layer->get_activation(), layer->get_z());
|
||||
|
||||
@ -380,13 +380,13 @@ Vector<Ref<MLPPMatrix>> MLPPWGAN::compute_generator_gradients(const Ref<MLPPVect
|
||||
void MLPPWGAN::handle_ui(int epoch, real_t cost_prev, const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &output_set) {
|
||||
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, output_set));
|
||||
|
||||
PLOG_MSG("Layer " + itos(network.size() + 1) + ":");
|
||||
PLOG_MSG("Layer " + itos(_network.size() + 1) + ":");
|
||||
|
||||
MLPPUtilities::print_ui_vb(output_layer->get_weights(), output_layer->get_bias());
|
||||
MLPPUtilities::print_ui_vb(_output_layer->get_weights(), _output_layer->get_bias());
|
||||
|
||||
if (!network.empty()) {
|
||||
for (int i = network.size() - 1; i >= 0; i--) {
|
||||
Ref<MLPPHiddenLayer> layer = network[i];
|
||||
if (!_network.empty()) {
|
||||
for (int i = _network.size() - 1; i >= 0; i--) {
|
||||
Ref<MLPPHiddenLayer> layer = _network[i];
|
||||
|
||||
PLOG_MSG("Layer " + itos(i + 1) + ":");
|
||||
|
||||
|
@ -70,14 +70,14 @@ protected:
|
||||
|
||||
static void _bind_methods();
|
||||
|
||||
Ref<MLPPMatrix> output_set;
|
||||
Ref<MLPPVector> y_hat;
|
||||
Ref<MLPPMatrix> _output_set;
|
||||
Ref<MLPPVector> _y_hat;
|
||||
|
||||
Vector<Ref<MLPPHiddenLayer>> network;
|
||||
Ref<MLPPOutputLayer> output_layer;
|
||||
Vector<Ref<MLPPHiddenLayer>> _network;
|
||||
Ref<MLPPOutputLayer> _output_layer;
|
||||
|
||||
int n;
|
||||
int k;
|
||||
int _n;
|
||||
int _k;
|
||||
};
|
||||
|
||||
#endif /* WGAN_hpp */
|
Loading…
Reference in New Issue
Block a user