Fully ported MLPPMLP.

This commit is contained in:
Relintai 2023-02-05 00:58:00 +01:00
parent 7581be0e7f
commit fbc20cc749
11 changed files with 477 additions and 118 deletions

View File

@ -1410,6 +1410,26 @@ std::vector<std::vector<real_t>> MLPPLinAlg::outerProduct(std::vector<real_t> a,
return C;
}
Ref<MLPPMatrix> MLPPLinAlg::outer_product(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b) {
Ref<MLPPMatrix> C;
C.instance();
Size2i size = Size2i(a->size(), b->size());
C->resize(size);
const real_t *a_ptr = a->ptr();
const real_t *b_ptr = b->ptr();
for (int i = 0; i < size.y; ++i) {
real_t curr_a = a_ptr[i];
for (int j = 0; j < size.x; ++j) {
C->set_element(i, j, curr_a * b_ptr[j]);
}
}
return C;
}
std::vector<real_t> MLPPLinAlg::hadamard_product(std::vector<real_t> a, std::vector<real_t> b) {
std::vector<real_t> c;
c.resize(a.size());
@ -1694,6 +1714,25 @@ std::vector<real_t> MLPPLinAlg::subtractMatrixRows(std::vector<real_t> a, std::v
return a;
}
Ref<MLPPVector> MLPPLinAlg::subtract_matrix_rows(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B) {
Ref<MLPPVector> c = a->duplicate();
Size2i b_size = B->size();
ERR_FAIL_COND_V(b_size.x != c->size(), c);
const real_t *b_ptr = B->ptr();
real_t *c_ptr = c->ptrw();
for (int i = 0; i < b_size.y; ++i) {
for (int j = 0; j < b_size.x; ++j) {
c_ptr[j] -= b_ptr[B->calculate_index(i, j)];
}
}
return c;
}
std::vector<real_t> MLPPLinAlg::log(std::vector<real_t> a) {
std::vector<real_t> b;
b.resize(a.size());
@ -2182,6 +2221,18 @@ real_t MLPPLinAlg::sum_elements(std::vector<real_t> a) {
return sum;
}
real_t MLPPLinAlg::sum_elementsv(const Ref<MLPPVector> &a) {
int a_size = a->size();
const real_t *a_ptr = a->ptr();
real_t sum = 0;
for (int i = 0; i < a_size; ++i) {
sum += a_ptr[i];
}
return sum;
}
real_t MLPPLinAlg::cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b) {
return dot(a, b) / (norm_2(a) * norm_2(b));
}

View File

@ -170,6 +170,7 @@ public:
// VECTOR FUNCTIONS
std::vector<std::vector<real_t>> outerProduct(std::vector<real_t> a, std::vector<real_t> b); // This multiplies a, bT
Ref<MLPPMatrix> outer_product(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b); // This multiplies a, bT
std::vector<real_t> hadamard_product(std::vector<real_t> a, std::vector<real_t> b);
Ref<MLPPVector> hadamard_productnv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b);
@ -195,6 +196,7 @@ public:
void subtractionv(const Ref<MLPPVector> &a, const Ref<MLPPVector> &b, Ref<MLPPVector> out);
std::vector<real_t> subtractMatrixRows(std::vector<real_t> a, std::vector<std::vector<real_t>> B);
Ref<MLPPVector> subtract_matrix_rows(const Ref<MLPPVector> &a, const Ref<MLPPMatrix> &B);
std::vector<real_t> log(std::vector<real_t> a);
std::vector<real_t> log10(std::vector<real_t> a);
@ -256,6 +258,7 @@ public:
real_t norm_sqv(const Ref<MLPPVector> &a);
real_t sum_elements(std::vector<real_t> a);
real_t sum_elementsv(const Ref<MLPPVector> &a);
real_t cosineSimilarity(std::vector<real_t> a, std::vector<real_t> b);

View File

@ -56,4 +56,5 @@ void MLPPMatrix::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPMatrix::set_from_mlpp_vectors_array);
ClassDB::bind_method(D_METHOD("set_from_arrays", "from"), &MLPPMatrix::set_from_arrays);
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPMatrix::set_from_mlpp_matrix);
}

View File

@ -373,9 +373,18 @@ public:
return ret;
}
_FORCE_INLINE_ void set_from_mlpp_matrix(const Ref<MLPPMatrix> &p_from) {
ERR_FAIL_COND(!p_from.is_valid());
resize(p_from->size());
for (int i = 0; i < p_from->data_size(); ++i) {
_data[i] = p_from->_data[i];
}
}
_FORCE_INLINE_ void set_from_mlpp_matrixr(const MLPPMatrix &p_from) {
resize(p_from.size());
for (int i = 0; i < p_from.data_size(); i++) {
for (int i = 0; i < p_from.data_size(); ++i) {
_data[i] = p_from._data[i];
}
}

View File

@ -15,15 +15,71 @@
#include <iostream>
#include <random>
std::vector<real_t> MLPPMLP::model_set_test(std::vector<std::vector<real_t>> X) {
return evaluate(X);
Ref<MLPPMatrix> MLPPMLP::get_input_set() {
return input_set;
}
void MLPPMLP::set_input_set(const Ref<MLPPMatrix> &val) {
input_set = val;
_initialized = false;
}
real_t MLPPMLP::model_test(std::vector<real_t> x) {
return evaluate(x);
Ref<MLPPVector> MLPPMLP::get_output_set() {
return output_set;
}
void MLPPMLP::set_output_set(const Ref<MLPPVector> &val) {
output_set = val;
_initialized = false;
}
int MLPPMLP::get_n_hidden() {
return n_hidden;
}
void MLPPMLP::set_n_hidden(const int val) {
n_hidden = val;
_initialized = false;
}
real_t MLPPMLP::get_lambda() {
return lambda;
}
void MLPPMLP::set_lambda(const real_t val) {
lambda = val;
_initialized = false;
}
real_t MLPPMLP::get_alpha() {
return alpha;
}
void MLPPMLP::set_alpha(const real_t val) {
alpha = val;
_initialized = false;
}
MLPPReg::RegularizationType MLPPMLP::get_reg() {
return reg;
}
void MLPPMLP::set_reg(const MLPPReg::RegularizationType val) {
reg = val;
_initialized = false;
}
Ref<MLPPVector> MLPPMLP::model_set_test(const Ref<MLPPMatrix> &X) {
return evaluatem(X);
}
real_t MLPPMLP::model_test(const Ref<MLPPVector> &x) {
return evaluatev(x);
}
void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
@ -33,47 +89,46 @@ void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) {
forward_pass();
while (true) {
cost_prev = cost(y_hat, outputSet);
cost_prev = cost(y_hat, output_set);
// Calculating the errors
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
Ref<MLPPVector> error = alg.subtractionnv(y_hat, output_set);
// Calculating the weight/bias gradients for layer 2
std::vector<real_t> D2_1 = alg.mat_vec_mult(alg.transpose(a2), error);
Ref<MLPPVector> D2_1 = alg.mat_vec_multv(alg.transposem(a2), error);
// weights and bias updation for layer 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / n, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
weights2 = alg.subtractionnv(weights2, alg.scalar_multiplynv(learning_rate / n, D2_1));
weights2 = regularization.reg_weightsv(weights2, lambda, alpha, reg);
bias2 -= learning_rate * alg.sum_elements(error) / n;
bias2 -= learning_rate * alg.sum_elementsv(error) / n;
// Calculating the weight/bias for layer 1
std::vector<std::vector<real_t>> D1_1;
D1_1.resize(n);
Ref<MLPPMatrix> D1_1;
D1_1 = alg.outerProduct(error, weights2);
D1_1 = alg.outer_product(error, weights2);
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2));
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2);
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(input_set), D1_2);
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / n, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate / n, D1_3));
weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / n, D1_2));
bias1 = alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(learning_rate / n, D1_2));
forward_pass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputSet));
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, output_set));
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
MLPPUtilities::print_ui_mb(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
MLPPUtilities::print_ui_vb(weights2, bias2);
}
epoch++;
@ -84,50 +139,77 @@ void MLPPMLP::gradient_descent(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
real_t y_hat = evaluate(inputSet[outputIndex]);
auto [z2, a2] = propagate(inputSet[outputIndex]);
cost_prev = cost({ y_hat }, { outputSet[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(input_set->size().x);
Ref<MLPPVector> output_set_row_tmp;
output_set_row_tmp.instance();
output_set_row_tmp->resize(1);
Ref<MLPPVector> y_hat_row_tmp;
y_hat_row_tmp.instance();
y_hat_row_tmp->resize(1);
Ref<MLPPMatrix> lz2;
lz2.instance();
Ref<MLPPMatrix> la2;
la2.instance();
while (true) {
int output_Index = distribution(generator);
input_set->get_row_into_mlpp_vector(output_Index, input_set_row_tmp);
real_t output_element = output_set->get_element(output_Index);
output_set_row_tmp->set_element(0, output_element);
real_t y_hat = evaluatev(input_set_row_tmp);
y_hat_row_tmp->set_element(0, y_hat);
propagatev(input_set_row_tmp, lz2, la2);
cost_prev = cost(y_hat_row_tmp, output_set_row_tmp);
real_t error = y_hat - output_element;
// Weight updation for layer 2
std::vector<real_t> D2_1 = alg.scalarMultiply(error, a2);
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
Ref<MLPPVector> D2_1 = alg.scalar_multiplym(error, a2);
weights2 = alg.subtractionm(weights2, alg.scalar_multiplym(learning_rate, D2_1));
weights2 = regularization.reg_weightsm(weights2, lambda, alpha, reg);
// Bias updation for layer 2
bias2 -= learning_rate * error;
// Weight updation for layer 1
std::vector<real_t> D1_1 = alg.scalarMultiply(error, weights2);
std::vector<real_t> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
std::vector<std::vector<real_t>> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2);
Ref<MLPPVector> D1_1 = alg.scalar_multiplym(error, weights2);
Ref<MLPPVector> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2));
Ref<MLPPMatrix> D1_3 = alg.outer_product(input_set_row_tmp, D1_2);
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(learning_rate, D1_3));
weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg);
// Bias updation for layer 1
bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2));
bias1 = alg.subtractionm(bias1, alg.scalar_multiplym(learning_rate, D1_2));
y_hat = evaluatev(input_set_row_tmp);
y_hat = evaluate(inputSet[outputIndex]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::cost_info(epoch, cost_prev, cost_prev);
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
MLPPUtilities::print_ui_mb(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
MLPPUtilities::print_ui_vb(weights2, bias2);
}
epoch++;
if (epoch > max_epoch) {
@ -139,61 +221,74 @@ void MLPPMLP::sgd(real_t learning_rate, int max_epoch, bool UI) {
}
void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
Ref<MLPPMatrix> lz2;
lz2.instance();
Ref<MLPPMatrix> la2;
la2.instance();
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(input_set, output_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = evaluate(inputMiniBatches[i]);
auto [z2, a2] = propagate(inputMiniBatches[i]);
cost_prev = cost(y_hat, outputMiniBatches[i]);
Ref<MLPPMatrix> current_input = batches.input_sets[i];
Ref<MLPPVector> current_output = batches.output_sets[i];
Ref<MLPPVector> y_hat = evaluatem(current_input);
propagatev(current_input, lz2, la2);
cost_prev = cost(y_hat, current_output);
// Calculating the errors
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
Ref<MLPPVector> error = alg.subtractionnv(y_hat, current_output);
// Calculating the weight/bias gradients for layer 2
std::vector<real_t> D2_1 = alg.mat_vec_mult(alg.transpose(a2), error);
Ref<MLPPVector> D2_1 = alg.mat_vec_multv(alg.transposem(a2), error);
real_t lr_d_cos = learning_rate / static_cast<real_t>(current_output->size());
// weights and bias updation for layser 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
weights2 = alg.subtractionnv(weights2, alg.scalar_multiplynv(lr_d_cos, D2_1));
weights2 = regularization.reg_weightsm(weights2, lambda, alpha, reg);
// Calculating the bias gradients for layer 2
real_t b_gradient = alg.sum_elements(error);
real_t b_gradient = alg.sum_elementsv(error);
// Bias Updation for layer 2
bias2 -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
bias2 -= learning_rate * b_gradient / current_output->size();
//Calculating the weight/bias for layer 1
std::vector<std::vector<real_t>> D1_1 = alg.outerProduct(error, weights2);
Ref<MLPPMatrix> D1_1 = alg.outer_product(error, weights2);
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
Ref<MLPPMatrix> D1_2 = alg.hadamard_productm(D1_1, avn.sigmoid_derivm(z2));
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2);
Ref<MLPPMatrix> D1_3 = alg.matmultm(alg.transposem(current_input), D1_2);
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
weights1 = alg.subtractionm(weights1, alg.scalar_multiplym(lr_d_cos, D1_3));
weights1 = regularization.reg_weightsm(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), D1_2));
bias1 = alg.subtract_matrix_rows(bias1, alg.scalar_multiplym(lr_d_cos, D1_2));
y_hat = evaluate(inputMiniBatches[i]);
y_hat = evaluatem(current_input);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, current_output));
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
MLPPUtilities::print_ui_mb(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
MLPPUtilities::print_ui_vb(weights2, bias2);
}
}
@ -209,77 +304,208 @@ void MLPPMLP::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, boo
real_t MLPPMLP::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
return util.performance_mat(y_hat, output_set);
}
void MLPPMLP::save(std::string fileName) {
void MLPPMLP::save(const String &fileName) {
ERR_FAIL_COND(!_initialized);
MLPPUtilities util;
util.saveParameters(fileName, weights1, bias1, 0, 1);
util.saveParameters(fileName, weights2, bias2, 1, 2);
//util.saveParameters(fileName, weights1, bias1, 0, 1);
//util.saveParameters(fileName, weights2, bias2, 1, 2);
}
real_t MLPPMLP::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
bool MLPPMLP::is_initialized() {
return _initialized;
}
void MLPPMLP::initialize() {
if (_initialized) {
return;
}
ERR_FAIL_COND(!input_set.is_valid() || !output_set.is_valid() || n_hidden == 0);
n = input_set->size().y;
k = input_set->size().x;
MLPPActivation avn;
y_hat->resize(n);
MLPPUtilities util;
weights1->resize(Size2i(k, n_hidden));
weights2->resize(n_hidden);
bias1->resize(n_hidden);
util.weight_initializationm(weights1);
util.weight_initializationv(weights2);
util.bias_initializationv(bias1);
bias2 = util.bias_initializationr();
z2.instance();
a2.instance();
_initialized = true;
}
real_t MLPPMLP::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights2, lambda, alpha, reg) + regularization.regTerm(weights1, lambda, alpha, reg);
return cost.log_lossv(y_hat, y) + regularization.reg_termv(weights2, lambda, alpha, reg) + regularization.reg_termv(weights1, lambda, alpha, reg);
}
std::vector<real_t> MLPPMLP::evaluate(std::vector<std::vector<real_t>> X) {
Ref<MLPPVector> MLPPMLP::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
return avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2)));
Ref<MLPPVector> pz2 = alg.mat_vec_addv(alg.matmultm(X, weights1), bias1);
Ref<MLPPVector> pa2 = avn.sigmoid_normm(pz2);
return avn.sigmoid_normv(alg.scalar_addnv(bias2, alg.mat_vec_multv(pa2, weights2)));
}
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPMLP::propagate(std::vector<std::vector<real_t>> X) {
void MLPPMLP::propagatem(const Ref<MLPPMatrix> &X, Ref<MLPPMatrix> z2_out, Ref<MLPPMatrix> a2_out) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
return { z2, a2 };
z2_out->set_from_mlpp_matrix(alg.mat_vec_addv(alg.matmultm(X, weights1), bias1));
a2_out->set_from_mlpp_matrix(avn.sigmoid_normm(z2));
}
real_t MLPPMLP::evaluate(std::vector<real_t> x) {
real_t MLPPMLP::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
return avn.sigmoid(alg.dot(weights2, a2) + bias2);
Ref<MLPPVector> pz2 = alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1);
Ref<MLPPVector> pa2 = avn.sigmoid_normv(pz2);
return avn.sigmoid(alg.dotv(weights2, pa2) + bias2);
}
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPMLP::propagate(std::vector<real_t> x) {
void MLPPMLP::propagatev(const Ref<MLPPVector> &x, Ref<MLPPVector> z2_out, Ref<MLPPVector> a2_out) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
return { z2, a2 };
z2_out->set_from_mlpp_vector(alg.additionnv(alg.mat_vec_multv(alg.transposem(weights1), x), bias1));
a2_out->set_from_mlpp_vector(avn.sigmoid_normv(z2));
}
void MLPPMLP::forward_pass() {
MLPPLinAlg alg;
MLPPActivation avn;
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);
y_hat = avn.sigmoid(alg.scalarAdd(bias2, alg.mat_vec_mult(a2, weights2)));
z2 = alg.mat_vec_addv(alg.matmultm(input_set, weights1), bias1);
a2 = avn.sigmoid_normv(z2);
y_hat = avn.sigmoid_normv(alg.scalar_addm(bias2, alg.mat_vec_multv(a2, weights2)));
}
MLPPMLP::MLPPMLP(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_hidden, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n_hidden(n_hidden), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
MLPPActivation avn;
y_hat.resize(n);
MLPPMLP::MLPPMLP(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
input_set = p_input_set;
output_set = p_output_set;
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
weights2 = MLPPUtilities::weightInitialization(n_hidden);
bias1 = MLPPUtilities::biasInitialization(n_hidden);
bias2 = MLPPUtilities::biasInitialization();
y_hat.instance();
n_hidden = p_n_hidden;
n = input_set->size().y;
k = input_set->size().x;
reg = p_reg;
lambda = p_lambda;
alpha = p_alpha;
MLPPActivation avn;
y_hat->resize(n);
MLPPUtilities util;
weights1.instance();
weights1->resize(Size2i(k, n_hidden));
weights2.instance();
weights2->resize(n_hidden);
bias1.instance();
bias1->resize(n_hidden);
util.weight_initializationm(weights1);
util.weight_initializationv(weights2);
util.bias_initializationv(bias1);
bias2 = util.bias_initializationr();
z2.instance();
a2.instance();
_initialized = true;
}
MLPPMLP::MLPPMLP() {
y_hat.instance();
n_hidden = 0;
n = 0;
k = 0;
reg = MLPPReg::REGULARIZATION_TYPE_NONE;
lambda = 0.5;
alpha = 0.5;
weights1.instance();
weights2.instance();
bias1.instance();
bias2 = 0;
z2.instance();
a2.instance();
_initialized = false;
}
MLPPMLP::~MLPPMLP() {
}
void MLPPMLP::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPMLP::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPMLP::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPMLP::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPMLP::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPMLP::get_n_hidden);
ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPMLP::set_n_hidden);
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPMLP::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPMLP::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPMLP::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPMLP::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPMLP::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPMLP::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPMLP::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPMLP::initialize);
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPMLP::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPMLP::model_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "UI"), &MLPPMLP::gradient_descent, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "UI"), &MLPPMLP::sgd, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "UI"), &MLPPMLP::mbgd, false);
ClassDB::bind_method(D_METHOD("score", "x"), &MLPPMLP::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPMLP::save);
}
// ======= OLD =======
MLPPMLPOld::MLPPMLPOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_hidden, std::string reg, real_t lambda, real_t alpha) :

View File

@ -15,6 +15,8 @@
#include "core/object/reference.h"
#include "../regularization/reg.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
@ -26,52 +28,78 @@ class MLPPMLP : public Reference {
GDCLASS(MLPPMLP, Reference);
public:
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
real_t model_test(std::vector<real_t> x);
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
int get_n_hidden();
void set_n_hidden(const int val);
real_t get_lambda();
void set_lambda(const real_t val);
real_t get_alpha();
void set_alpha(const real_t val);
MLPPReg::RegularizationType get_reg();
void set_reg(const MLPPReg::RegularizationType val);
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
bool is_initialized();
void initialize();
void gradient_descent(real_t learning_rate, int max_epoch, bool UI = false);
void sgd(real_t learning_rate, int max_epoch, bool UI = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
void save(const String &file_name);
MLPPMLP(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
MLPPMLP(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, int p_n_hidden, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
MLPPMLP();
~MLPPMLP();
private:
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
protected:
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
std::vector<real_t> evaluate(std::vector<std::vector<real_t>> X);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> propagate(std::vector<std::vector<real_t>> X);
real_t evaluate(std::vector<real_t> x);
std::tuple<std::vector<real_t>, std::vector<real_t>> propagate(std::vector<real_t> x);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
void propagatem(const Ref<MLPPMatrix> &X, Ref<MLPPMatrix> z2_out, Ref<MLPPMatrix> a2_out);
real_t evaluatev(const Ref<MLPPVector> &x);
void propagatev(const Ref<MLPPVector> &x, Ref<MLPPVector> z2_out, Ref<MLPPVector> a2_out);
void forward_pass();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
static void _bind_methods();
std::vector<std::vector<real_t>> weights1;
std::vector<real_t> weights2;
Ref<MLPPMatrix> input_set;
Ref<MLPPVector> output_set;
Ref<MLPPVector> y_hat;
std::vector<real_t> bias1;
Ref<MLPPMatrix> weights1;
Ref<MLPPVector> weights2;
Ref<MLPPVector> bias1;
real_t bias2;
std::vector<std::vector<real_t>> z2;
std::vector<std::vector<real_t>> a2;
Ref<MLPPMatrix> z2;
Ref<MLPPMatrix> a2;
int n;
int k;
int n_hidden;
// Regularization Params
std::string reg;
MLPPReg::RegularizationType reg;
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
int _initialized;
};
class MLPPMLPOld {

View File

@ -154,6 +154,7 @@ void MLPPReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("reg_deriv_termv", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termv);
ClassDB::bind_method(D_METHOD("reg_deriv_termm", "weights", "lambda", "alpha", "reg"), &MLPPReg::reg_deriv_termm);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_NONE);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_RIDGE);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_LASSO);
BIND_ENUM_CONSTANT(REGULARIZATION_TYPE_ELASTIC_NET);

View File

@ -24,7 +24,8 @@ class MLPPReg : public Reference {
public:
enum RegularizationType {
REGULARIZATION_TYPE_RIDGE = 0,
REGULARIZATION_TYPE_NONE = 0,
REGULARIZATION_TYPE_RIDGE,
REGULARIZATION_TYPE_LASSO,
REGULARIZATION_TYPE_ELASTIC_NET,
REGULARIZATION_TYPE_WEIGHT_CLIPPING,

View File

@ -478,6 +478,36 @@ void MLPPUtilities::UI(std::vector<real_t> weights, std::vector<real_t> initial,
std::cout << bias << std::endl;
}
void MLPPUtilities::print_ui_vb(Ref<MLPPVector> weights, real_t bias) {
String str = "Values of the weight(s):\n";
str += weights->to_string();
str += "\nValue of the bias:\n";
str += String::num(bias);
PLOG_MSG(str);
}
void MLPPUtilities::print_ui_vib(Ref<MLPPVector> weights, Ref<MLPPVector> initial, real_t bias) {
String str = "Values of the weight(s):\n";
str += weights->to_string();
str += "\nValues of the initial(s):\n";
str += initial->to_string();
str += "\nValue of the bias:\n";
str += String::num(bias);
PLOG_MSG(str);
}
void MLPPUtilities::print_ui_mb(Ref<MLPPMatrix> weights, Ref<MLPPVector> bias) {
String str = "Values of the weight(s):\n";
str += weights->to_string();
str += "\nValue of the biased:\n";
str += bias->to_string();
PLOG_MSG(str);
}
void MLPPUtilities::CostInfo(int epoch, real_t cost_prev, real_t Cost) {
std::cout << "-----------------------------------" << std::endl;
std::cout << "This is epoch: " << epoch << std::endl;

View File

@ -65,7 +65,12 @@ public:
// Gradient Descent related
static void UI(std::vector<real_t> weights, real_t bias);
static void UI(std::vector<real_t> weights, std::vector<real_t> initial, real_t bias);
static void UI(std::vector<std::vector<real_t>>, std::vector<real_t> bias);
static void UI(std::vector<std::vector<real_t>> weights, std::vector<real_t> bias);
static void print_ui_vb(Ref<MLPPVector> weights, real_t bias);
static void print_ui_vib(Ref<MLPPVector> weights, Ref<MLPPVector> initial, real_t bias);
static void print_ui_mb(Ref<MLPPMatrix> weights, Ref<MLPPVector> bias);
static void CostInfo(int epoch, real_t cost_prev, real_t Cost);
static void cost_info(int epoch, real_t cost_prev, real_t cost);

View File

@ -39,6 +39,8 @@ SOFTWARE.
#include "mlpp/kmeans/kmeans.h"
#include "mlpp/knn/knn.h"
#include "mlpp/mlp/mlp.h"
#include "test/mlpp_tests.h"
void register_pmlpp_types(ModuleRegistrationLevel p_level) {
@ -58,6 +60,8 @@ void register_pmlpp_types(ModuleRegistrationLevel p_level) {
ClassDB::register_class<MLPPKNN>();
ClassDB::register_class<MLPPKMeans>();
ClassDB::register_class<MLPPMLP>();
ClassDB::register_class<MLPPDataESimple>();
ClassDB::register_class<MLPPDataSimple>();
ClassDB::register_class<MLPPDataComplex>();