2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// HiddenLayer.cpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
|
|
//
|
|
|
|
|
2023-01-24 18:12:23 +01:00
|
|
|
#include "hidden_layer.h"
|
|
|
|
#include "../activation/activation.h"
|
|
|
|
#include "../lin_alg/lin_alg.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
|
|
|
2023-01-31 01:22:13 +01:00
|
|
|
void MLPPHiddenLayer::forward_pass() {
|
|
|
|
MLPPLinAlg alg;
|
|
|
|
MLPPActivation avn;
|
2023-02-03 20:02:59 +01:00
|
|
|
|
|
|
|
z = alg.mat_vec_addv(alg.matmultm(input, weights), bias);
|
|
|
|
a = avn.run_activation_norm_matrix(activation, z);
|
2023-01-31 01:22:13 +01:00
|
|
|
}
|
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
|
2023-01-31 01:22:13 +01:00
|
|
|
MLPPLinAlg alg;
|
|
|
|
MLPPActivation avn;
|
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
z_test = alg.additionm(alg.mat_vec_multv(alg.transposem(weights), x), bias);
|
|
|
|
a_test = avn.run_activation_norm_matrix(activation, z_test);
|
|
|
|
}
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, String p_reg, real_t p_lambda, real_t p_alpha) {
|
|
|
|
n_hidden = p_n_hidden;
|
|
|
|
activation = p_activation;
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
input = p_input;
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
// Regularization Params
|
|
|
|
reg = p_reg;
|
|
|
|
lambda = p_lambda; /* Regularization Parameter */
|
|
|
|
alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
weight_init = p_weight_init;
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
z.instance();
|
|
|
|
a.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
z_test.instance();
|
|
|
|
a_test.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
delta.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
weights.instance();
|
|
|
|
bias.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
weights->resize(Size2i(input->size().x, n_hidden));
|
|
|
|
bias->resize(n_hidden);
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
MLPPUtilities::weight_initializationm(weights, weight_init);
|
|
|
|
MLPPUtilities::bias_initializationv(bias);
|
|
|
|
}
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
MLPPHiddenLayer::MLPPHiddenLayer() {
|
|
|
|
n_hidden = 0;
|
|
|
|
activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
// Regularization Params
|
|
|
|
//reg = 0;
|
|
|
|
lambda = 0; /* Regularization Parameter */
|
|
|
|
alpha = 0; /* This is the controlling param for Elastic Net*/
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
z.instance();
|
|
|
|
a.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
z_test.instance();
|
|
|
|
a_test.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
delta.instance();
|
2023-01-31 01:22:13 +01:00
|
|
|
|
2023-02-03 20:02:59 +01:00
|
|
|
weights.instance();
|
|
|
|
bias.instance();
|
|
|
|
}
|
|
|
|
MLPPHiddenLayer::~MLPPHiddenLayer() {
|
2023-01-31 01:22:13 +01:00
|
|
|
}
|
2023-01-24 19:20:18 +01:00
|
|
|
|
2023-01-30 16:56:16 +01:00
|
|
|
MLPPOldHiddenLayer::MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) :
|
2023-01-24 19:00:54 +01:00
|
|
|
n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
|
2023-01-25 01:09:37 +01:00
|
|
|
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
|
|
|
bias = MLPPUtilities::biasInitialization(n_hidden);
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Linear"] = &MLPPActivation::linear;
|
|
|
|
activationTest_map["Linear"] = &MLPPActivation::linear;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
|
|
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Swish"] = &MLPPActivation::swish;
|
|
|
|
activationTest_map["Swish"] = &MLPPActivation::swish;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Mish"] = &MLPPActivation::mish;
|
|
|
|
activationTest_map["Mish"] = &MLPPActivation::mish;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["SinC"] = &MLPPActivation::sinc;
|
|
|
|
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Softplus"] = &MLPPActivation::softplus;
|
|
|
|
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Softsign"] = &MLPPActivation::softsign;
|
|
|
|
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
|
|
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Logit"] = &MLPPActivation::logit;
|
|
|
|
activationTest_map["Logit"] = &MLPPActivation::logit;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
|
|
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["RELU"] = &MLPPActivation::RELU;
|
|
|
|
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["GELU"] = &MLPPActivation::GELU;
|
|
|
|
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Sign"] = &MLPPActivation::sign;
|
|
|
|
activationTest_map["Sign"] = &MLPPActivation::sign;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
|
|
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Sinh"] = &MLPPActivation::sinh;
|
|
|
|
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Cosh"] = &MLPPActivation::cosh;
|
|
|
|
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Tanh"] = &MLPPActivation::tanh;
|
|
|
|
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Csch"] = &MLPPActivation::csch;
|
|
|
|
activationTest_map["Csch"] = &MLPPActivation::csch;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Sech"] = &MLPPActivation::sech;
|
|
|
|
activationTest_map["Sech"] = &MLPPActivation::sech;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Coth"] = &MLPPActivation::coth;
|
|
|
|
activationTest_map["Coth"] = &MLPPActivation::coth;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
|
|
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
|
|
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Artanh"] = &MLPPActivation::artanh;
|
|
|
|
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
|
|
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Arsech"] = &MLPPActivation::arsech;
|
|
|
|
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:23:30 +01:00
|
|
|
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
|
|
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
2023-01-24 19:00:54 +01:00
|
|
|
}
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-30 16:56:16 +01:00
|
|
|
void MLPPOldHiddenLayer::forwardPass() {
|
2023-01-25 00:29:02 +01:00
|
|
|
MLPPLinAlg alg;
|
2023-01-24 19:23:30 +01:00
|
|
|
MLPPActivation avn;
|
2023-01-24 19:00:54 +01:00
|
|
|
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
2023-02-03 20:02:59 +01:00
|
|
|
a = (avn.*activation_map[activation])(z, false);
|
2023-01-24 19:00:54 +01:00
|
|
|
}
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-30 16:56:16 +01:00
|
|
|
void MLPPOldHiddenLayer::Test(std::vector<real_t> x) {
|
2023-01-25 00:29:02 +01:00
|
|
|
MLPPLinAlg alg;
|
2023-01-24 19:23:30 +01:00
|
|
|
MLPPActivation avn;
|
2023-01-24 19:00:54 +01:00
|
|
|
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
2023-02-03 20:02:59 +01:00
|
|
|
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
2023-01-24 19:00:54 +01:00
|
|
|
}
|