pmlpp/mlpp/hidden_layer/hidden_layer.h

147 lines
3.6 KiB
C++

#ifndef MLPP_HIDDEN_LAYER_H
#define MLPP_HIDDEN_LAYER_H
//
// HiddenLayer.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "core/string/ustring.h"
#include "core/object/reference.h"
#include "../activation/activation.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include <map>
#include <string>
#include <vector>
class MLPPHiddenLayer : public Reference {
GDCLASS(MLPPHiddenLayer, Reference);
public:
int get_n_hidden() const;
void set_n_hidden(const int val);
MLPPActivation::ActivationFunction get_activation() const;
void set_activation(const MLPPActivation::ActivationFunction val);
Ref<MLPPMatrix> get_input();
void set_input(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_weights();
void set_weights(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_bias();
void set_bias(const Ref<MLPPVector> &val);
Ref<MLPPMatrix> get_z();
void set_z(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_a();
void set_a(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_z_test();
void set_z_test(const Ref<MLPPVector> &val);
Ref<MLPPVector> get_a_test();
void set_a_test(const Ref<MLPPVector> &val);
Ref<MLPPMatrix> get_delta();
void set_delta(const Ref<MLPPMatrix> &val);
MLPPReg::RegularizationType get_reg() const;
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda() const;
void set_lambda(const real_t val);
real_t get_alpha() const;
void set_alpha(const real_t val);
MLPPUtilities::WeightDistributionType get_weight_init() const;
void set_weight_init(const MLPPUtilities::WeightDistributionType val);
bool is_initialized();
void initialize();
void forward_pass();
void test(const Ref<MLPPVector> &x);
MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha);
MLPPHiddenLayer();
~MLPPHiddenLayer();
protected:
static void _bind_methods();
int n_hidden;
MLPPActivation::ActivationFunction activation;
Ref<MLPPMatrix> input;
Ref<MLPPMatrix> weights;
Ref<MLPPVector> bias;
Ref<MLPPMatrix> z;
Ref<MLPPMatrix> a;
Ref<MLPPVector> z_test;
Ref<MLPPVector> a_test;
Ref<MLPPMatrix> delta;
// Regularization Params
MLPPReg::RegularizationType reg;
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
MLPPUtilities::WeightDistributionType weight_init;
bool _initialized;
};
class MLPPOldHiddenLayer {
public:
MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
int n_hidden;
std::string activation;
std::vector<std::vector<real_t>> input;
std::vector<std::vector<real_t>> weights;
std::vector<real_t> bias;
std::vector<std::vector<real_t>> z;
std::vector<std::vector<real_t>> a;
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivation::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activationTest_map;
std::vector<real_t> z_test;
std::vector<real_t> a_test;
std::vector<std::vector<real_t>> delta;
// Regularization Params
std::string reg;
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
std::string weightInit;
void forwardPass();
void Test(std::vector<real_t> x);
};
#endif /* HiddenLayer_hpp */