pmlpp/mlpp/lin_alg/mlpp_tensor3.cpp

613 lines
16 KiB
C++

#include "mlpp_tensor3.h"
#include "core/io/image.h"
void MLPPTensor3::add_feature_maps_image(const Ref<Image> &p_img, const int p_channels) {
ERR_FAIL_COND(!p_img.is_valid());
Size2i img_size = Size2i(p_img->get_width(), p_img->get_height());
int channel_count = 0;
int channels[4];
if (p_channels & IMAGE_CHANNEL_FLAG_R) {
channels[channel_count] = 0;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_G) {
channels[channel_count] = 1;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_B) {
channels[channel_count] = 2;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_A) {
channels[channel_count] = 3;
++channel_count;
}
ERR_FAIL_COND(channel_count == 0);
if (unlikely(_size == Size3i())) {
resize(Size3i(img_size.x, img_size.y, channel_count));
}
Size2i fms = feature_map_size();
ERR_FAIL_COND(img_size != fms);
int start_channel = _size.y;
_size.y += channel_count;
resize(_size);
Ref<Image> img = p_img;
img->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c = img->get_pixel(x, y);
for (int i = 0; i < channel_count; ++i) {
set_element(y, x, start_channel + i, c[channels[i]]);
}
}
}
img->unlock();
}
Ref<Image> MLPPTensor3::get_feature_map_image(const int p_index_z) {
ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref<Image>());
Ref<Image> image;
image.instance();
if (data_size() == 0) {
return image;
}
PoolByteArray arr;
int fmsi = calculate_feature_map_index(p_index_z);
int fms = feature_map_data_size();
arr.resize(fms);
PoolByteArray::Write w = arr.write();
uint8_t *wptr = w.ptr();
for (int i = 0; i < fms; ++i) {
wptr[i] = static_cast<uint8_t>(_data[fmsi + i] * 255.0);
}
image->create(_size.x, _size.y, false, Image::FORMAT_L8, arr);
return image;
}
Ref<Image> MLPPTensor3::get_feature_maps_image(const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) {
if (p_index_r != -1) {
ERR_FAIL_INDEX_V(p_index_r, _size.z, Ref<Image>());
}
if (p_index_g != -1) {
ERR_FAIL_INDEX_V(p_index_g, _size.z, Ref<Image>());
}
if (p_index_b != -1) {
ERR_FAIL_INDEX_V(p_index_b, _size.z, Ref<Image>());
}
if (p_index_a != -1) {
ERR_FAIL_INDEX_V(p_index_a, _size.z, Ref<Image>());
}
Ref<Image> image;
image.instance();
if (data_size() == 0) {
return image;
}
Size2i fms = feature_map_size();
image->create(_size.x, _size.y, false, Image::FORMAT_RGBA8);
image->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c;
if (p_index_r != -1) {
c.r = get_element(y, x, p_index_r);
}
if (p_index_g != -1) {
c.g = get_element(y, x, p_index_g);
}
if (p_index_b != -1) {
c.b = get_element(y, x, p_index_b);
}
if (p_index_a != -1) {
c.a = get_element(y, x, p_index_a);
}
image->set_pixel(x, y, c);
}
}
image->unlock();
return image;
}
void MLPPTensor3::get_feature_map_into_image(Ref<Image> p_target, const int p_index_z, const int p_target_channels) const {
ERR_FAIL_INDEX(p_index_z, _size.z);
ERR_FAIL_COND(!p_target.is_valid());
int channel_count = 0;
int channels[4];
if (p_target_channels & IMAGE_CHANNEL_FLAG_R) {
channels[channel_count] = 0;
++channel_count;
}
if (p_target_channels & IMAGE_CHANNEL_FLAG_G) {
channels[channel_count] = 1;
++channel_count;
}
if (p_target_channels & IMAGE_CHANNEL_FLAG_B) {
channels[channel_count] = 2;
++channel_count;
}
if (p_target_channels & IMAGE_CHANNEL_FLAG_A) {
channels[channel_count] = 3;
++channel_count;
}
ERR_FAIL_COND(channel_count == 0);
if (data_size() == 0) {
p_target->clear();
return;
}
Size2i img_size = Size2i(p_target->get_width(), p_target->get_height());
Size2i fms = feature_map_size();
if (img_size != fms) {
bool mip_maps = p_target->has_mipmaps();
p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST);
if (p_target->has_mipmaps() != mip_maps) {
if (mip_maps) {
p_target->generate_mipmaps();
} else {
p_target->clear_mipmaps();
}
}
}
p_target->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c;
float e = get_element(y, x, p_index_z);
for (int i = 0; i < channel_count; ++i) {
c[channels[i]] = e;
}
p_target->set_pixel(x, y, c);
}
}
p_target->unlock();
}
void MLPPTensor3::get_feature_maps_into_image(Ref<Image> p_target, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) const {
ERR_FAIL_COND(!p_target.is_valid());
if (p_index_r != -1) {
ERR_FAIL_INDEX(p_index_r, _size.z);
}
if (p_index_g != -1) {
ERR_FAIL_INDEX(p_index_g, _size.z);
}
if (p_index_b != -1) {
ERR_FAIL_INDEX(p_index_b, _size.z);
}
if (p_index_a != -1) {
ERR_FAIL_INDEX(p_index_a, _size.z);
}
if (data_size() == 0) {
p_target->clear();
return;
}
Size2i img_size = Size2i(p_target->get_width(), p_target->get_height());
Size2i fms = feature_map_size();
if (img_size != fms) {
bool mip_maps = p_target->has_mipmaps();
p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST);
if (p_target->has_mipmaps() != mip_maps) {
if (mip_maps) {
p_target->generate_mipmaps();
} else {
p_target->clear_mipmaps();
}
}
}
p_target->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c;
if (p_index_r != -1) {
c.r = get_element(y, x, p_index_r);
}
if (p_index_g != -1) {
c.g = get_element(y, x, p_index_g);
}
if (p_index_b != -1) {
c.b = get_element(y, x, p_index_b);
}
if (p_index_a != -1) {
c.a = get_element(y, x, p_index_a);
}
p_target->set_pixel(x, y, c);
}
}
p_target->unlock();
}
void MLPPTensor3::set_feature_map_image(const Ref<Image> &p_img, const int p_index_z, const int p_image_channel_flag) {
ERR_FAIL_COND(!p_img.is_valid());
ERR_FAIL_INDEX(p_index_z, _size.z);
int channel_index = -1;
for (int i = 0; i < 4; ++i) {
if (((p_image_channel_flag & (1 << i)) != 0)) {
channel_index = i;
break;
}
}
ERR_FAIL_INDEX(channel_index, 4);
Size2i img_size = Size2i(p_img->get_width(), p_img->get_height());
Size2i fms = feature_map_size();
ERR_FAIL_COND(img_size != fms);
Ref<Image> img = p_img;
img->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c = img->get_pixel(x, y);
set_element(y, x, p_index_z, c[channel_index]);
}
}
img->unlock();
}
void MLPPTensor3::set_feature_maps_image(const Ref<Image> &p_img, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) {
ERR_FAIL_COND(!p_img.is_valid());
if (p_index_r != -1) {
ERR_FAIL_INDEX(p_index_r, _size.z);
}
if (p_index_g != -1) {
ERR_FAIL_INDEX(p_index_g, _size.z);
}
if (p_index_b != -1) {
ERR_FAIL_INDEX(p_index_b, _size.z);
}
if (p_index_a != -1) {
ERR_FAIL_INDEX(p_index_a, _size.z);
}
Size2i img_size = Size2i(p_img->get_width(), p_img->get_height());
Size2i fms = feature_map_size();
ERR_FAIL_COND(img_size != fms);
Ref<Image> img = p_img;
img->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c = img->get_pixel(x, y);
if (p_index_r != -1) {
set_element(y, x, p_index_r, c.r);
}
if (p_index_g != -1) {
set_element(y, x, p_index_g, c.g);
}
if (p_index_b != -1) {
set_element(y, x, p_index_b, c.b);
}
if (p_index_a != -1) {
set_element(y, x, p_index_a, c.a);
}
}
}
img->unlock();
}
void MLPPTensor3::set_from_image(const Ref<Image> &p_img, const int p_channels) {
ERR_FAIL_COND(!p_img.is_valid());
int channel_count = 0;
int channels[4];
if (p_channels & IMAGE_CHANNEL_FLAG_R) {
channels[channel_count] = 0;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_G) {
channels[channel_count] = 1;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_B) {
channels[channel_count] = 2;
++channel_count;
}
if (p_channels & IMAGE_CHANNEL_FLAG_A) {
channels[channel_count] = 3;
++channel_count;
}
ERR_FAIL_COND(channel_count == 0);
Size2i img_size = Size2i(p_img->get_width(), p_img->get_height());
resize(Size3i(img_size.x, img_size.y, channel_count));
Size2i fms = feature_map_size();
Ref<Image> img = p_img;
img->lock();
for (int y = 0; y < fms.y; ++y) {
for (int x = 0; x < fms.x; ++x) {
Color c = img->get_pixel(x, y);
for (int i = 0; i < channel_count; ++i) {
set_element(y, x, i, c[channels[i]]);
}
}
}
img->unlock();
}
String MLPPTensor3::to_string() {
String str;
str += "[MLPPTensor3: \n";
for (int z = 0; z < _size.z; ++z) {
int z_ofs = _size.x * _size.y * z;
str += " [ ";
for (int y = 0; y < _size.y; ++y) {
str += " [ ";
for (int x = 0; x < _size.x; ++x) {
str += String::num(_data[_size.x * y + x + z_ofs]);
str += " ";
}
str += " ]\n";
}
str += "],\n";
}
str += "]\n";
return str;
}
std::vector<real_t> MLPPTensor3::to_flat_std_vector() const {
std::vector<real_t> ret;
ret.resize(data_size());
real_t *w = &ret[0];
memcpy(w, _data, sizeof(real_t) * data_size());
return ret;
}
void MLPPTensor3::set_from_std_vectors(const std::vector<std::vector<std::vector<real_t>>> &p_from) {
if (p_from.size() == 0) {
reset();
return;
}
resize(Size3i(p_from[1].size(), p_from[0].size(), p_from.size()));
if (data_size() == 0) {
reset();
return;
}
for (uint32_t k = 0; k < p_from.size(); ++k) {
const std::vector<std::vector<real_t>> &fm = p_from[k];
for (uint32_t i = 0; i < p_from.size(); ++i) {
const std::vector<real_t> &r = fm[i];
ERR_CONTINUE(r.size() != static_cast<uint32_t>(_size.x));
int start_index = i * _size.x;
const real_t *from_ptr = &r[0];
for (int j = 0; j < _size.x; j++) {
_data[start_index + j] = from_ptr[j];
}
}
}
}
std::vector<std::vector<std::vector<real_t>>> MLPPTensor3::to_std_vector() {
std::vector<std::vector<std::vector<real_t>>> ret;
ret.resize(_size.z);
for (int k = 0; k < _size.z; ++k) {
ret[k].resize(_size.y);
for (int i = 0; i < _size.y; ++i) {
std::vector<real_t> row;
for (int j = 0; j < _size.x; ++j) {
row.push_back(_data[calculate_index(i, j, 1)]);
}
ret[k][i] = row;
}
}
return ret;
}
MLPPTensor3::MLPPTensor3(const std::vector<std::vector<std::vector<real_t>>> &p_from) {
_data = NULL;
set_from_std_vectors(p_from);
}
void MLPPTensor3::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_feature_map_pool_vector", "row"), &MLPPTensor3::add_feature_map_pool_vector);
ClassDB::bind_method(D_METHOD("add_feature_map_mlpp_vector", "row"), &MLPPTensor3::add_feature_map_mlpp_vector);
ClassDB::bind_method(D_METHOD("add_feature_map_mlpp_matrix", "matrix"), &MLPPTensor3::add_feature_map_mlpp_matrix);
ClassDB::bind_method(D_METHOD("remove_feature_map", "index"), &MLPPTensor3::remove_feature_map);
ClassDB::bind_method(D_METHOD("remove_feature_map_unordered", "index"), &MLPPTensor3::remove_feature_map_unordered);
ClassDB::bind_method(D_METHOD("swap_feature_map", "index_1", "index_2"), &MLPPTensor3::swap_feature_map);
ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear);
ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset);
ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty);
ClassDB::bind_method(D_METHOD("feature_map_data_size"), &MLPPTensor3::feature_map_data_size);
ClassDB::bind_method(D_METHOD("feature_map_size"), &MLPPTensor3::feature_map_size);
ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size);
ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size);
ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize);
ClassDB::bind_method(D_METHOD("set_shape", "size"), &MLPPTensor3::set_shape);
ClassDB::bind_method(D_METHOD("calculate_index", "index_y", "index_x", "index_z"), &MLPPTensor3::calculate_index);
ClassDB::bind_method(D_METHOD("calculate_feature_map_index", "index_z"), &MLPPTensor3::calculate_feature_map_index);
ClassDB::bind_method(D_METHOD("get_element_index", "index"), &MLPPTensor3::get_element_index);
ClassDB::bind_method(D_METHOD("set_element_index", "index", "val"), &MLPPTensor3::set_element_index);
ClassDB::bind_method(D_METHOD("get_element", "index_y", "index_x", "index_z"), &MLPPTensor3::get_element);
ClassDB::bind_method(D_METHOD("set_element", "index_y", "index_x", "index_z", "val"), &MLPPTensor3::set_element);
ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y", "index_z"), &MLPPTensor3::get_row_pool_vector);
ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y", "index_z"), &MLPPTensor3::get_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "index_z", "target"), &MLPPTensor3::get_row_into_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "index_z", "row"), &MLPPTensor3::set_row_pool_vector);
ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "index_z", "row"), &MLPPTensor3::set_row_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_feature_map_pool_vector", "index_z"), &MLPPTensor3::get_feature_map_pool_vector);
ClassDB::bind_method(D_METHOD("get_feature_map_mlpp_vector", "index_z"), &MLPPTensor3::get_feature_map_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_feature_map_into_mlpp_vector", "index_z", "target"), &MLPPTensor3::get_feature_map_into_mlpp_vector);
ClassDB::bind_method(D_METHOD("get_feature_map_mlpp_matrix", "index_z"), &MLPPTensor3::get_feature_map_mlpp_matrix);
ClassDB::bind_method(D_METHOD("get_feature_map_into_mlpp_matrix", "index_z", "target"), &MLPPTensor3::get_feature_map_into_mlpp_matrix);
ClassDB::bind_method(D_METHOD("set_feature_map_pool_vector", "index_z", "row"), &MLPPTensor3::set_feature_map_pool_vector);
ClassDB::bind_method(D_METHOD("set_feature_map_mlpp_vector", "index_z", "row"), &MLPPTensor3::set_feature_map_mlpp_vector);
ClassDB::bind_method(D_METHOD("set_feature_map_mlpp_matrix", "index_z", "mat"), &MLPPTensor3::set_feature_map_mlpp_matrix);
ClassDB::bind_method(D_METHOD("add_feature_maps_image", "img", "channels"), &MLPPTensor3::add_feature_maps_image, IMAGE_CHANNEL_FLAG_RGBA);
ClassDB::bind_method(D_METHOD("get_feature_map_image", "index_z"), &MLPPTensor3::get_feature_map_image);
ClassDB::bind_method(D_METHOD("get_feature_maps_image", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::get_feature_maps_image, -1, -1, -1, -1);
ClassDB::bind_method(D_METHOD("get_feature_map_into_image", "target", "index_z", "target_channels"), &MLPPTensor3::get_feature_map_into_image, IMAGE_CHANNEL_FLAG_RGB);
ClassDB::bind_method(D_METHOD("get_feature_maps_into_image", "target", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::get_feature_maps_into_image, -1, -1, -1, -1);
ClassDB::bind_method(D_METHOD("set_feature_map_image", "img", "index_z", "image_channel_flag"), &MLPPTensor3::set_feature_map_image, IMAGE_CHANNEL_FLAG_R);
ClassDB::bind_method(D_METHOD("set_feature_maps_image", "img", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::set_feature_maps_image);
ClassDB::bind_method(D_METHOD("set_from_image", "img", "channels"), &MLPPTensor3::set_from_image, IMAGE_CHANNEL_FLAG_RGBA);
ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill);
ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector);
ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array);
ClassDB::bind_method(D_METHOD("duplicate"), &MLPPTensor3::duplicate);
ClassDB::bind_method(D_METHOD("set_from_mlpp_tensor3", "from"), &MLPPTensor3::set_from_mlpp_tensor3);
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix);
ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array);
ClassDB::bind_method(D_METHOD("set_from_mlpp_matrices_array", "from"), &MLPPTensor3::set_from_mlpp_matrices_array);
ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_R);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_G);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_B);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_A);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_NONE);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RG);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGB);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GB);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GBA);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_BA);
BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGBA);
}