#include "mlpp_tensor3.h" #include "core/io/image.h" void MLPPTensor3::add_feature_maps_image(const Ref &p_img, const int p_channels) { ERR_FAIL_COND(!p_img.is_valid()); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); int channel_count = 0; int channels[4]; if (p_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (unlikely(_size == Size3i())) { resize(Size3i(img_size.x, img_size.y, channel_count)); } Size2i fms = feature_map_size(); ERR_FAIL_COND(img_size != fms); int start_channel = _size.y; _size.y += channel_count; resize(_size); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); for (int i = 0; i < channel_count; ++i) { set_element(y, x, start_channel + i, c[channels[i]]); } } } img->unlock(); } Ref MLPPTensor3::get_feature_map_image(const int p_index_z) { ERR_FAIL_INDEX_V(p_index_z, _size.z, Ref()); Ref image; image.instance(); if (data_size() == 0) { return image; } PoolByteArray arr; int fmsi = calculate_feature_map_index(p_index_z); int fms = feature_map_data_size(); arr.resize(fms); PoolByteArray::Write w = arr.write(); uint8_t *wptr = w.ptr(); for (int i = 0; i < fms; ++i) { wptr[i] = static_cast(_data[fmsi + i] * 255.0); } image->create(_size.x, _size.y, false, Image::FORMAT_L8, arr); return image; } Ref MLPPTensor3::get_feature_maps_image(const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) { if (p_index_r != -1) { ERR_FAIL_INDEX_V(p_index_r, _size.z, Ref()); } if (p_index_g != -1) { ERR_FAIL_INDEX_V(p_index_g, _size.z, Ref()); } if (p_index_b != -1) { ERR_FAIL_INDEX_V(p_index_b, _size.z, Ref()); } if (p_index_a != -1) { ERR_FAIL_INDEX_V(p_index_a, _size.z, Ref()); } Ref image; image.instance(); if (data_size() == 0) { return image; } Size2i fms = feature_map_size(); image->create(_size.x, _size.y, false, Image::FORMAT_RGBA8); image->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; if (p_index_r != -1) { c.r = get_element(y, x, p_index_r); } if (p_index_g != -1) { c.g = get_element(y, x, p_index_g); } if (p_index_b != -1) { c.b = get_element(y, x, p_index_b); } if (p_index_a != -1) { c.a = get_element(y, x, p_index_a); } image->set_pixel(x, y, c); } } image->unlock(); return image; } void MLPPTensor3::get_feature_map_into_image(Ref p_target, const int p_index_z, const int p_target_channels) const { ERR_FAIL_INDEX(p_index_z, _size.z); ERR_FAIL_COND(!p_target.is_valid()); int channel_count = 0; int channels[4]; if (p_target_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_target_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = feature_map_size(); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; float e = get_element(y, x, p_index_z); for (int i = 0; i < channel_count; ++i) { c[channels[i]] = e; } p_target->set_pixel(x, y, c); } } p_target->unlock(); } void MLPPTensor3::get_feature_maps_into_image(Ref p_target, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) const { ERR_FAIL_COND(!p_target.is_valid()); if (p_index_r != -1) { ERR_FAIL_INDEX(p_index_r, _size.z); } if (p_index_g != -1) { ERR_FAIL_INDEX(p_index_g, _size.z); } if (p_index_b != -1) { ERR_FAIL_INDEX(p_index_b, _size.z); } if (p_index_a != -1) { ERR_FAIL_INDEX(p_index_a, _size.z); } if (data_size() == 0) { p_target->clear(); return; } Size2i img_size = Size2i(p_target->get_width(), p_target->get_height()); Size2i fms = feature_map_size(); if (img_size != fms) { bool mip_maps = p_target->has_mipmaps(); p_target->resize(fms.x, fms.y, Image::INTERPOLATE_NEAREST); if (p_target->has_mipmaps() != mip_maps) { if (mip_maps) { p_target->generate_mipmaps(); } else { p_target->clear_mipmaps(); } } } p_target->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c; if (p_index_r != -1) { c.r = get_element(y, x, p_index_r); } if (p_index_g != -1) { c.g = get_element(y, x, p_index_g); } if (p_index_b != -1) { c.b = get_element(y, x, p_index_b); } if (p_index_a != -1) { c.a = get_element(y, x, p_index_a); } p_target->set_pixel(x, y, c); } } p_target->unlock(); } void MLPPTensor3::set_feature_map_image(const Ref &p_img, const int p_index_z, const int p_image_channel_flag) { ERR_FAIL_COND(!p_img.is_valid()); ERR_FAIL_INDEX(p_index_z, _size.z); int channel_index = -1; for (int i = 0; i < 4; ++i) { if (((p_image_channel_flag & (1 << i)) != 0)) { channel_index = i; break; } } ERR_FAIL_INDEX(channel_index, 4); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = feature_map_size(); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); set_element(y, x, p_index_z, c[channel_index]); } } img->unlock(); } void MLPPTensor3::set_feature_maps_image(const Ref &p_img, const int p_index_r, const int p_index_g, const int p_index_b, const int p_index_a) { ERR_FAIL_COND(!p_img.is_valid()); if (p_index_r != -1) { ERR_FAIL_INDEX(p_index_r, _size.z); } if (p_index_g != -1) { ERR_FAIL_INDEX(p_index_g, _size.z); } if (p_index_b != -1) { ERR_FAIL_INDEX(p_index_b, _size.z); } if (p_index_a != -1) { ERR_FAIL_INDEX(p_index_a, _size.z); } Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); Size2i fms = feature_map_size(); ERR_FAIL_COND(img_size != fms); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); if (p_index_r != -1) { set_element(y, x, p_index_r, c.r); } if (p_index_g != -1) { set_element(y, x, p_index_g, c.g); } if (p_index_b != -1) { set_element(y, x, p_index_b, c.b); } if (p_index_a != -1) { set_element(y, x, p_index_a, c.a); } } } img->unlock(); } void MLPPTensor3::set_from_image(const Ref &p_img, const int p_channels) { ERR_FAIL_COND(!p_img.is_valid()); int channel_count = 0; int channels[4]; if (p_channels & IMAGE_CHANNEL_FLAG_R) { channels[channel_count] = 0; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_G) { channels[channel_count] = 1; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_B) { channels[channel_count] = 2; ++channel_count; } if (p_channels & IMAGE_CHANNEL_FLAG_A) { channels[channel_count] = 3; ++channel_count; } ERR_FAIL_COND(channel_count == 0); Size2i img_size = Size2i(p_img->get_width(), p_img->get_height()); resize(Size3i(img_size.x, img_size.y, channel_count)); Size2i fms = feature_map_size(); Ref img = p_img; img->lock(); for (int y = 0; y < fms.y; ++y) { for (int x = 0; x < fms.x; ++x) { Color c = img->get_pixel(x, y); for (int i = 0; i < channel_count; ++i) { set_element(y, x, i, c[channels[i]]); } } } img->unlock(); } String MLPPTensor3::to_string() { String str; str += "[MLPPTensor3: \n"; for (int z = 0; z < _size.z; ++z) { int z_ofs = _size.x * _size.y * z; str += " [ "; for (int y = 0; y < _size.y; ++y) { str += " [ "; for (int x = 0; x < _size.x; ++x) { str += String::num(_data[_size.x * y + x + z_ofs]); str += " "; } str += " ]\n"; } str += "],\n"; } str += "]\n"; return str; } std::vector MLPPTensor3::to_flat_std_vector() const { std::vector ret; ret.resize(data_size()); real_t *w = &ret[0]; memcpy(w, _data, sizeof(real_t) * data_size()); return ret; } void MLPPTensor3::set_from_std_vectors(const std::vector>> &p_from) { if (p_from.size() == 0) { reset(); return; } resize(Size3i(p_from[1].size(), p_from[0].size(), p_from.size())); if (data_size() == 0) { reset(); return; } for (uint32_t k = 0; k < p_from.size(); ++k) { const std::vector> &fm = p_from[k]; for (uint32_t i = 0; i < p_from.size(); ++i) { const std::vector &r = fm[i]; ERR_CONTINUE(r.size() != static_cast(_size.x)); int start_index = i * _size.x; const real_t *from_ptr = &r[0]; for (int j = 0; j < _size.x; j++) { _data[start_index + j] = from_ptr[j]; } } } } std::vector>> MLPPTensor3::to_std_vector() { std::vector>> ret; ret.resize(_size.z); for (int k = 0; k < _size.z; ++k) { ret[k].resize(_size.y); for (int i = 0; i < _size.y; ++i) { std::vector row; for (int j = 0; j < _size.x; ++j) { row.push_back(_data[calculate_index(i, j, 1)]); } ret[k][i] = row; } } return ret; } MLPPTensor3::MLPPTensor3(const std::vector>> &p_from) { _data = NULL; set_from_std_vectors(p_from); } void MLPPTensor3::_bind_methods() { ClassDB::bind_method(D_METHOD("add_feature_map_pool_vector", "row"), &MLPPTensor3::add_feature_map_pool_vector); ClassDB::bind_method(D_METHOD("add_feature_map_mlpp_vector", "row"), &MLPPTensor3::add_feature_map_mlpp_vector); ClassDB::bind_method(D_METHOD("add_feature_map_mlpp_matrix", "matrix"), &MLPPTensor3::add_feature_map_mlpp_matrix); ClassDB::bind_method(D_METHOD("remove_feature_map", "index"), &MLPPTensor3::remove_feature_map); ClassDB::bind_method(D_METHOD("remove_feature_map_unordered", "index"), &MLPPTensor3::remove_feature_map_unordered); ClassDB::bind_method(D_METHOD("swap_feature_map", "index_1", "index_2"), &MLPPTensor3::swap_feature_map); ClassDB::bind_method(D_METHOD("clear"), &MLPPTensor3::clear); ClassDB::bind_method(D_METHOD("reset"), &MLPPTensor3::reset); ClassDB::bind_method(D_METHOD("empty"), &MLPPTensor3::empty); ClassDB::bind_method(D_METHOD("feature_map_data_size"), &MLPPTensor3::feature_map_data_size); ClassDB::bind_method(D_METHOD("feature_map_size"), &MLPPTensor3::feature_map_size); ClassDB::bind_method(D_METHOD("data_size"), &MLPPTensor3::data_size); ClassDB::bind_method(D_METHOD("size"), &MLPPTensor3::size); ClassDB::bind_method(D_METHOD("resize", "size"), &MLPPTensor3::resize); ClassDB::bind_method(D_METHOD("set_shape", "size"), &MLPPTensor3::set_shape); ClassDB::bind_method(D_METHOD("calculate_index", "index_y", "index_x", "index_z"), &MLPPTensor3::calculate_index); ClassDB::bind_method(D_METHOD("calculate_feature_map_index", "index_z"), &MLPPTensor3::calculate_feature_map_index); ClassDB::bind_method(D_METHOD("get_element_index", "index"), &MLPPTensor3::get_element_index); ClassDB::bind_method(D_METHOD("set_element_index", "index", "val"), &MLPPTensor3::set_element_index); ClassDB::bind_method(D_METHOD("get_element", "index_y", "index_x", "index_z"), &MLPPTensor3::get_element); ClassDB::bind_method(D_METHOD("set_element", "index_y", "index_x", "index_z", "val"), &MLPPTensor3::set_element); ClassDB::bind_method(D_METHOD("get_row_pool_vector", "index_y", "index_z"), &MLPPTensor3::get_row_pool_vector); ClassDB::bind_method(D_METHOD("get_row_mlpp_vector", "index_y", "index_z"), &MLPPTensor3::get_row_mlpp_vector); ClassDB::bind_method(D_METHOD("get_row_into_mlpp_vector", "index_y", "index_z", "target"), &MLPPTensor3::get_row_into_mlpp_vector); ClassDB::bind_method(D_METHOD("set_row_pool_vector", "index_y", "index_z", "row"), &MLPPTensor3::set_row_pool_vector); ClassDB::bind_method(D_METHOD("set_row_mlpp_vector", "index_y", "index_z", "row"), &MLPPTensor3::set_row_mlpp_vector); ClassDB::bind_method(D_METHOD("get_feature_map_pool_vector", "index_z"), &MLPPTensor3::get_feature_map_pool_vector); ClassDB::bind_method(D_METHOD("get_feature_map_mlpp_vector", "index_z"), &MLPPTensor3::get_feature_map_mlpp_vector); ClassDB::bind_method(D_METHOD("get_feature_map_into_mlpp_vector", "index_z", "target"), &MLPPTensor3::get_feature_map_into_mlpp_vector); ClassDB::bind_method(D_METHOD("get_feature_map_mlpp_matrix", "index_z"), &MLPPTensor3::get_feature_map_mlpp_matrix); ClassDB::bind_method(D_METHOD("get_feature_map_into_mlpp_matrix", "index_z", "target"), &MLPPTensor3::get_feature_map_into_mlpp_matrix); ClassDB::bind_method(D_METHOD("set_feature_map_pool_vector", "index_z", "row"), &MLPPTensor3::set_feature_map_pool_vector); ClassDB::bind_method(D_METHOD("set_feature_map_mlpp_vector", "index_z", "row"), &MLPPTensor3::set_feature_map_mlpp_vector); ClassDB::bind_method(D_METHOD("set_feature_map_mlpp_matrix", "index_z", "mat"), &MLPPTensor3::set_feature_map_mlpp_matrix); ClassDB::bind_method(D_METHOD("add_feature_maps_image", "img", "channels"), &MLPPTensor3::add_feature_maps_image, IMAGE_CHANNEL_FLAG_RGBA); ClassDB::bind_method(D_METHOD("get_feature_map_image", "index_z"), &MLPPTensor3::get_feature_map_image); ClassDB::bind_method(D_METHOD("get_feature_maps_image", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::get_feature_maps_image, -1, -1, -1, -1); ClassDB::bind_method(D_METHOD("get_feature_map_into_image", "target", "index_z", "target_channels"), &MLPPTensor3::get_feature_map_into_image, IMAGE_CHANNEL_FLAG_RGB); ClassDB::bind_method(D_METHOD("get_feature_maps_into_image", "target", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::get_feature_maps_into_image, -1, -1, -1, -1); ClassDB::bind_method(D_METHOD("set_feature_map_image", "img", "index_z", "image_channel_flag"), &MLPPTensor3::set_feature_map_image, IMAGE_CHANNEL_FLAG_R); ClassDB::bind_method(D_METHOD("set_feature_maps_image", "img", "index_r", "index_g", "index_b", "index_a"), &MLPPTensor3::set_feature_maps_image); ClassDB::bind_method(D_METHOD("set_from_image", "img", "channels"), &MLPPTensor3::set_from_image, IMAGE_CHANNEL_FLAG_RGBA); ClassDB::bind_method(D_METHOD("fill", "val"), &MLPPTensor3::fill); ClassDB::bind_method(D_METHOD("to_flat_pool_vector"), &MLPPTensor3::to_flat_pool_vector); ClassDB::bind_method(D_METHOD("to_flat_byte_array"), &MLPPTensor3::to_flat_byte_array); ClassDB::bind_method(D_METHOD("duplicate"), &MLPPTensor3::duplicate); ClassDB::bind_method(D_METHOD("set_from_mlpp_tensor3", "from"), &MLPPTensor3::set_from_mlpp_tensor3); ClassDB::bind_method(D_METHOD("set_from_mlpp_matrix", "from"), &MLPPTensor3::set_from_mlpp_matrix); ClassDB::bind_method(D_METHOD("set_from_mlpp_vectors_array", "from"), &MLPPTensor3::set_from_mlpp_vectors_array); ClassDB::bind_method(D_METHOD("set_from_mlpp_matrices_array", "from"), &MLPPTensor3::set_from_mlpp_matrices_array); ClassDB::bind_method(D_METHOD("is_equal_approx", "with", "tolerance"), &MLPPTensor3::is_equal_approx, CMP_EPSILON); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_R); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_G); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_B); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_A); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_NONE); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RG); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGB); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GB); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_GBA); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_BA); BIND_ENUM_CONSTANT(IMAGE_CHANNEL_FLAG_RGBA); }