mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-25 15:59:19 +01:00
115 lines
2.6 KiB
C++
115 lines
2.6 KiB
C++
|
|
#ifndef MLPP_OUTPUT_LAYER_H
|
|
#define MLPP_OUTPUT_LAYER_H
|
|
|
|
//
|
|
// OutputLayer.hpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "core/math/math_defs.h"
|
|
#include "core/string/ustring.h"
|
|
|
|
#include "core/object/reference.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include "../lin_alg/mlpp_matrix.h"
|
|
#include "../lin_alg/mlpp_vector.h"
|
|
|
|
class MLPPOutputLayer : public Reference {
|
|
GDCLASS(MLPPOutputLayer, Reference);
|
|
|
|
public:
|
|
int get_n_hidden();
|
|
void set_n_hidden(const int val);
|
|
|
|
MLPPActivation::ActivationFunction get_activation();
|
|
void set_activation(const MLPPActivation::ActivationFunction val);
|
|
|
|
MLPPCost::CostTypes get_cost();
|
|
void set_cost(const MLPPCost::CostTypes val);
|
|
|
|
Ref<MLPPMatrix> get_input();
|
|
void set_input(const Ref<MLPPMatrix> &val);
|
|
|
|
Ref<MLPPVector> get_weights();
|
|
void set_weights(const Ref<MLPPVector> &val);
|
|
|
|
real_t get_bias();
|
|
void set_bias(const real_t val);
|
|
|
|
Ref<MLPPVector> get_z();
|
|
void set_z(const Ref<MLPPVector> &val);
|
|
|
|
Ref<MLPPVector> get_a();
|
|
void set_a(const Ref<MLPPVector> &val);
|
|
|
|
Ref<MLPPVector> get_z_test();
|
|
void set_z_test(const Ref<MLPPVector> &val);
|
|
|
|
Ref<MLPPVector> get_a_test();
|
|
void set_a_test(const Ref<MLPPVector> &val);
|
|
|
|
Ref<MLPPVector> get_delta();
|
|
void set_delta(const Ref<MLPPVector> &val);
|
|
|
|
MLPPReg::RegularizationType get_reg();
|
|
void set_reg(const MLPPReg::RegularizationType val);
|
|
|
|
real_t get_lambda();
|
|
void set_lambda(const real_t val);
|
|
|
|
real_t get_alpha();
|
|
void set_alpha(const real_t val);
|
|
|
|
MLPPUtilities::WeightDistributionType get_weight_init();
|
|
void set_weight_init(const MLPPUtilities::WeightDistributionType val);
|
|
|
|
bool is_initialized();
|
|
void initialize();
|
|
|
|
void forward_pass();
|
|
void test(const Ref<MLPPVector> &x);
|
|
|
|
MLPPOutputLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha);
|
|
|
|
MLPPOutputLayer();
|
|
~MLPPOutputLayer();
|
|
|
|
protected:
|
|
static void _bind_methods();
|
|
|
|
int _n_hidden;
|
|
MLPPActivation::ActivationFunction _activation;
|
|
MLPPCost::CostTypes _cost;
|
|
|
|
Ref<MLPPMatrix> _input;
|
|
|
|
Ref<MLPPVector> _weights;
|
|
real_t _bias;
|
|
|
|
Ref<MLPPVector> _z;
|
|
Ref<MLPPVector> _a;
|
|
|
|
Ref<MLPPVector> _z_test;
|
|
Ref<MLPPVector> _a_test;
|
|
|
|
Ref<MLPPVector> _delta;
|
|
|
|
// Regularization Params
|
|
MLPPReg::RegularizationType _reg;
|
|
real_t _lambda; /* Regularization Parameter */
|
|
real_t _alpha; /* This is the controlling param for Elastic Net*/
|
|
|
|
MLPPUtilities::WeightDistributionType _weight_init;
|
|
|
|
bool _initialized;
|
|
};
|
|
|
|
#endif /* OutputLayer_hpp */
|