mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-08 17:29:36 +01:00
193 lines
6.3 KiB
C++
193 lines
6.3 KiB
C++
//
|
|
// TanhReg.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "tanh_reg.h"
|
|
#include "../activation/activation.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
#include "../cost/cost.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
namespace MLPP{
|
|
TanhReg::TanhReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg, double lambda, double alpha)
|
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha)
|
|
{
|
|
y_hat.resize(n);
|
|
weights = Utilities::weightInitialization(k);
|
|
bias = Utilities::biasInitialization();
|
|
}
|
|
|
|
std::vector<double> TanhReg::modelSetTest(std::vector<std::vector<double>> X){
|
|
return Evaluate(X);
|
|
}
|
|
|
|
double TanhReg::modelTest(std::vector<double> x){
|
|
return Evaluate(x);
|
|
}
|
|
|
|
void TanhReg::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while(true){
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.tanh(z, 1)))));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
// UI PORTION
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
}
|
|
|
|
void TanhReg::SGD(double learning_rate, int max_epoch, bool UI){
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
while(true){
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
double y_hat = Evaluate(inputSet[outputIndex]);
|
|
cost_prev = Cost({y_hat}, {outputSet[outputIndex]});
|
|
|
|
double error = y_hat - outputSet[outputIndex];
|
|
|
|
// Weight Updation
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * (1 - y_hat * y_hat), inputSet[outputIndex]));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
// Bias updation
|
|
bias -= learning_rate * error * (1 - y_hat * y_hat);
|
|
|
|
y_hat = Evaluate({inputSet[outputIndex]});
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost({y_hat}, {outputSet[outputIndex]}));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void TanhReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
|
Activation avn;
|
|
LinAlg alg;
|
|
Reg regularization;
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = n/mini_batch_size;
|
|
auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
while(true){
|
|
for(int i = 0; i < n_mini_batch; i++){
|
|
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
|
|
std::vector<double> z = propagate(inputMiniBatches[i]);
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the weight gradients
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.tanh(z, 1)))));
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
// Calculating the bias gradients
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.tanh(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
if(UI) {
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
Utilities::UI(weights, bias);
|
|
}
|
|
}
|
|
epoch++;
|
|
if(epoch > max_epoch) { break; }
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
double TanhReg::score(){
|
|
Utilities util;
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void TanhReg::save(std::string fileName){
|
|
Utilities util;
|
|
util.saveParameters(fileName, weights, bias);
|
|
}
|
|
|
|
double TanhReg::Cost(std::vector <double> y_hat, std::vector<double> y){
|
|
Reg regularization;
|
|
class Cost cost;
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
|
}
|
|
|
|
std::vector<double> TanhReg::Evaluate(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return avn.tanh(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
|
}
|
|
|
|
std::vector<double>TanhReg::propagate(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
|
}
|
|
|
|
double TanhReg::Evaluate(std::vector<double> x){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
return avn.tanh(alg.dot(weights, x) + bias);
|
|
}
|
|
|
|
double TanhReg::propagate(std::vector<double> x){
|
|
LinAlg alg;
|
|
return alg.dot(weights, x) + bias;
|
|
}
|
|
|
|
// Tanh ( wTx + b )
|
|
void TanhReg::forwardPass(){
|
|
LinAlg alg;
|
|
Activation avn;
|
|
|
|
z = propagate(inputSet);
|
|
y_hat = avn.tanh(z);
|
|
}
|
|
} |