mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-12 13:47:18 +01:00
236 lines
7.2 KiB
C++
236 lines
7.2 KiB
C++
//
|
|
// KMeans.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "kmeans.h"
|
|
#include "../utilities/utilities.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
#include <climits>
|
|
|
|
namespace MLPP{
|
|
KMeans::KMeans(std::vector<std::vector<double>> inputSet, int k, std::string init_type)
|
|
: inputSet(inputSet), k(k), init_type(init_type)
|
|
{
|
|
if(init_type == "KMeans++"){
|
|
kmeansppInitialization(k);
|
|
}
|
|
else{
|
|
centroidInitialization(k);
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<double>> KMeans::modelSetTest(std::vector<std::vector<double>> X){
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> closestCentroids;
|
|
for(int i = 0; i < inputSet.size(); i++){
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for(int j = 0; j < r[0].size(); j++){
|
|
bool isCentroidCloser = alg.euclideanDistance(X[i], mu[j]) < alg.euclideanDistance(X[i], closestCentroid);
|
|
if(isCentroidCloser){
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
closestCentroids.push_back(closestCentroid);
|
|
}
|
|
return closestCentroids;
|
|
}
|
|
|
|
std::vector<double> KMeans::modelTest(std::vector<double> x){
|
|
LinAlg alg;
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for(int j = 0; j < mu.size(); j++){
|
|
if(alg.euclideanDistance(x, mu[j]) < alg.euclideanDistance(x, closestCentroid)){
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
return closestCentroid;
|
|
}
|
|
|
|
void KMeans::train(int epoch_num, bool UI){
|
|
double cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
Evaluate();
|
|
|
|
while(true){
|
|
|
|
// STEPS OF THE ALGORITHM
|
|
// 1. DETERMINE r_nk
|
|
// 2. DETERMINE J
|
|
// 3. DETERMINE mu_k
|
|
|
|
// STOP IF CONVERGED, ELSE REPEAT
|
|
|
|
cost_prev = Cost();
|
|
|
|
computeMu();
|
|
Evaluate();
|
|
|
|
// UI PORTION
|
|
if(UI) { Utilities::CostInfo(epoch, cost_prev, Cost()); }
|
|
epoch++;
|
|
|
|
if(epoch > epoch_num) { break; }
|
|
|
|
}
|
|
}
|
|
|
|
double KMeans::score(){
|
|
return Cost();
|
|
}
|
|
|
|
std::vector<double> KMeans::silhouette_scores(){
|
|
LinAlg alg;
|
|
std::vector<std::vector<double>> closestCentroids = modelSetTest(inputSet);
|
|
std::vector<double> silhouette_scores;
|
|
for(int i = 0; i < inputSet.size(); i++){
|
|
// COMPUTING a[i]
|
|
double a = 0;
|
|
for(int j = 0; j < inputSet.size(); j++){
|
|
if(i != j && r[i] == r[j]){
|
|
a += alg.euclideanDistance(inputSet[i], inputSet[j]);
|
|
}
|
|
}
|
|
// NORMALIZE a[i]
|
|
a /= closestCentroids[i].size() - 1;
|
|
|
|
|
|
// COMPUTING b[i]
|
|
double b = INT_MAX;
|
|
for(int j = 0; j < mu.size(); j++){
|
|
if(closestCentroids[i] != mu[j]){
|
|
double sum = 0;
|
|
for(int k = 0; k < inputSet.size(); k++){
|
|
sum += alg.euclideanDistance(inputSet[i], inputSet[k]);
|
|
}
|
|
// NORMALIZE b[i]
|
|
double k_clusterSize = 0;
|
|
for(int k = 0; k < closestCentroids.size(); k++){
|
|
if(closestCentroids[k] == mu[j]){
|
|
k_clusterSize++;
|
|
}
|
|
}
|
|
if(sum / k_clusterSize < b) { b = sum / k_clusterSize; }
|
|
}
|
|
}
|
|
silhouette_scores.push_back((b - a)/fmax(a, b));
|
|
// Or the expanded version:
|
|
// if(a < b) {
|
|
// silhouette_scores.push_back(1 - a/b);
|
|
// }
|
|
// else if(a == b){
|
|
// silhouette_scores.push_back(0);
|
|
// }
|
|
// else{
|
|
// silhouette_scores.push_back(b/a - 1);
|
|
// }
|
|
}
|
|
return silhouette_scores;
|
|
}
|
|
|
|
// This simply computes r_nk
|
|
void KMeans::Evaluate(){
|
|
LinAlg alg;
|
|
r.resize(inputSet.size());
|
|
|
|
for(int i = 0; i < r.size(); i++){
|
|
r[i].resize(k);
|
|
}
|
|
|
|
for(int i = 0; i < r.size(); i++){
|
|
std::vector<double> closestCentroid = mu[0];
|
|
for(int j = 0; j < r[0].size(); j++){
|
|
bool isCentroidCloser = alg.euclideanDistance(inputSet[i], mu[j]) < alg.euclideanDistance(inputSet[i], closestCentroid);
|
|
if(isCentroidCloser){
|
|
closestCentroid = mu[j];
|
|
}
|
|
}
|
|
for(int j = 0; j < r[0].size(); j++){
|
|
if(mu[j] == closestCentroid) {
|
|
r[i][j] = 1;
|
|
}
|
|
else { r[i][j] = 0; }
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// This simply computes or re-computes mu_k
|
|
void KMeans::computeMu(){
|
|
LinAlg alg;
|
|
for(int i = 0; i < mu.size(); i++){
|
|
std::vector<double> num;
|
|
num.resize(r.size());
|
|
|
|
for(int i = 0; i < num.size(); i++){
|
|
num[i] = 0;
|
|
}
|
|
|
|
double den = 0;
|
|
for(int j = 0; j < r.size(); j++){
|
|
num = alg.addition(num, alg.scalarMultiply(r[j][i], inputSet[j]));
|
|
}
|
|
for(int j = 0; j < r.size(); j++){
|
|
den += r[j][i];
|
|
}
|
|
mu[i] = alg.scalarMultiply(double(1)/double(den), num);
|
|
}
|
|
|
|
}
|
|
|
|
void KMeans::centroidInitialization(int k){
|
|
mu.resize(k);
|
|
|
|
for(int i = 0; i < k; i++){
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
|
|
mu[i].resize(inputSet.size());
|
|
mu[i] = inputSet[distribution(generator)];
|
|
}
|
|
}
|
|
|
|
void KMeans::kmeansppInitialization(int k){
|
|
LinAlg alg;
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(inputSet.size() - 1));
|
|
mu.push_back(inputSet[distribution(generator)]);
|
|
|
|
for(int i = 0; i < k - 1; i++){
|
|
std::vector<double> farthestCentroid;
|
|
for(int j = 0; j < inputSet.size(); j++){
|
|
double max_dist = 0;
|
|
/* SUM ALL THE SQUARED DISTANCES, CHOOSE THE ONE THAT'S FARTHEST
|
|
AS TO SPREAD OUT THE CLUSTER CENTROIDS. */
|
|
double sum = 0;
|
|
for(int k = 0; k < mu.size(); k++){
|
|
sum += alg.euclideanDistance(inputSet[j], mu[k]);
|
|
}
|
|
if(sum * sum > max_dist){
|
|
farthestCentroid = inputSet[j];
|
|
max_dist = sum * sum;
|
|
}
|
|
}
|
|
mu.push_back(farthestCentroid);
|
|
}
|
|
}
|
|
|
|
double KMeans::Cost(){
|
|
LinAlg alg;
|
|
double sum = 0;
|
|
for(int i = 0; i < r.size(); i++){
|
|
for(int j = 0; j < r[0].size(); j++){
|
|
sum += r[i][j] * alg.norm_sq(alg.subtraction(inputSet[i], mu[j]));
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
}
|