pmlpp/mlpp/softmax_net/softmax_net_old.h

61 lines
2.0 KiB
C++

#ifndef MLPP_SOFTMAX_NET_OLD_H
#define MLPP_SOFTMAX_NET_OLD_H
//
// SoftmaxNet.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPSoftmaxNetOld {
public:
MLPPSoftmaxNetOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelTest(std::vector<real_t> x);
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
std::vector<std::vector<real_t>> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
private:
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<std::vector<real_t>> Evaluate(std::vector<std::vector<real_t>> X);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> propagate(std::vector<std::vector<real_t>> X);
std::vector<real_t> Evaluate(std::vector<real_t> x);
std::tuple<std::vector<real_t>, std::vector<real_t>> propagate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<std::vector<real_t>> outputSet;
std::vector<std::vector<real_t>> y_hat;
std::vector<std::vector<real_t>> weights1;
std::vector<std::vector<real_t>> weights2;
std::vector<real_t> bias1;
std::vector<real_t> bias2;
std::vector<std::vector<real_t>> z2;
std::vector<std::vector<real_t>> a2;
int n;
int k;
int n_class;
int n_hidden;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* SoftmaxNet_hpp */