Added old versions for all remaining classes.

This commit is contained in:
Relintai 2023-02-11 00:46:43 +01:00
parent 14c0cede56
commit e8d0b13eed
26 changed files with 4180 additions and 2 deletions

12
SCsub
View File

@ -63,6 +63,18 @@ sources = [
"mlpp/softmax_reg/softmax_reg_old.cpp",
"mlpp/auto_encoder/auto_encoder_old.cpp",
"mlpp/tanh_reg/tanh_reg_old.cpp",
"mlpp/softmax_net/softmax_net_old.cpp",
"mlpp/multinomial_nb/multinomial_nb_old.cpp",
"mlpp/mann/mann_old.cpp",
"mlpp/log_reg/log_reg_old.cpp",
"mlpp/lin_reg/lin_reg_old.cpp",
"mlpp/gaussian_nb/gaussian_nb_old.cpp",
"mlpp/gan/gan_old.cpp",
"mlpp/exp_reg/exp_reg_old.cpp",
"mlpp/dual_svc/dual_svc_old.cpp",
"mlpp/c_log_log_reg/c_log_log_reg_old.cpp",
"mlpp/bernoulli_nb/bernoulli_nb_old.cpp",
"mlpp/ann/ann_old.cpp",
"test/mlpp_tests.cpp",
]

818
mlpp/ann/ann_old.cpp Normal file
View File

@ -0,0 +1,818 @@
//
// ANN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "ann_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <cmath>
#include <iostream>
#include <random>
MLPPANNOld::MLPPANNOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet) {
inputSet = p_inputSet;
outputSet = p_outputSet;
n = inputSet.size();
k = inputSet[0].size();
lrScheduler = "None";
decayConstant = 0;
dropRate = 0;
}
MLPPANNOld::~MLPPANNOld() {
delete outputLayer;
}
std::vector<real_t> MLPPANNOld::modelSetTest(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
network[0].input = X;
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
} else {
outputLayer->input = X;
}
outputLayer->forwardPass();
return outputLayer->a;
}
real_t MLPPANNOld::modelTest(std::vector<real_t> x) {
if (!network.empty()) {
network[0].Test(x);
for (uint32_t i = 1; i < network.size(); i++) {
network[i].Test(network[i - 1].a_test);
}
outputLayer->Test(network[network.size() - 1].a_test);
} else {
outputLayer->Test(x);
}
return outputLayer->a_test;
}
void MLPPANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
real_t initial_learning_rate = learning_rate;
alg.printMatrix(network[network.size() - 1].weights);
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
cost_prev = Cost(y_hat, outputSet);
auto grads = computeGradients(y_hat, outputSet);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
updateParameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too.
std::cout << learning_rate << std::endl;
forwardPass();
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputSet);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPANNOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
std::vector<real_t> y_hat = modelSetTest({ inputSet[outputIndex] });
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
auto grads = computeGradients(y_hat, { outputSet[outputIndex] });
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
updateParameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest({ inputSet[outputIndex] });
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, { outputSet[outputIndex] });
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
updateParameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<real_t> v_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
}
if (v_output.empty()) {
v_output.resize(outputWGrad.size());
}
if (NAG) { // "Aposterori" calculation
updateParameters(v_hidden, v_output, 0); // DON'T update bias.
}
v_hidden = alg.addition(alg.scalarMultiply(gamma, v_hidden), alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad));
v_output = alg.addition(alg.scalarMultiply(gamma, v_output), alg.scalarMultiply(learning_rate / n, outputWGrad));
updateParameters(v_hidden, v_output, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<real_t> v_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
}
if (v_output.empty()) {
v_output.resize(outputWGrad.size());
}
v_hidden = alg.addition(v_hidden, alg.exponentiate(cumulativeHiddenLayerWGrad, 2));
v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2));
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden))));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output))));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<real_t> v_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
}
if (v_output.empty()) {
v_output.resize(outputWGrad.size());
}
v_hidden = alg.addition(alg.scalarMultiply(1 - b1, v_hidden), alg.scalarMultiply(b1, alg.exponentiate(cumulativeHiddenLayerWGrad, 2)));
v_output = alg.addition(v_output, alg.exponentiate(outputWGrad, 2));
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(cumulativeHiddenLayerWGrad, alg.scalarAdd(e, alg.sqrt(v_hidden))));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(outputWGrad, alg.scalarAdd(e, alg.sqrt(v_output))));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> m_hidden;
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<real_t> m_output;
std::vector<real_t> v_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
}
if (m_output.empty() && v_output.empty()) {
m_output.resize(outputWGrad.size());
v_output.resize(outputWGrad.size());
}
m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad));
v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2)));
m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad));
v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2)));
std::vector<std::vector<std::vector<real_t>>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden);
std::vector<std::vector<std::vector<real_t>>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden);
std::vector<real_t> m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output);
std::vector<real_t> v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output);
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, alg.sqrt(v_hidden_hat))));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, alg.sqrt(v_output_hat))));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> m_hidden;
std::vector<std::vector<std::vector<real_t>>> u_hidden;
std::vector<real_t> m_output;
std::vector<real_t> u_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && m_hidden.empty() && u_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
u_hidden = alg.resize(u_hidden, cumulativeHiddenLayerWGrad);
}
if (m_output.empty() && u_output.empty()) {
m_output.resize(outputWGrad.size());
u_output.resize(outputWGrad.size());
}
m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad));
u_hidden = alg.max(alg.scalarMultiply(b2, u_hidden), alg.abs(cumulativeHiddenLayerWGrad));
m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad));
u_output = alg.max(alg.scalarMultiply(b2, u_output), alg.abs(outputWGrad));
std::vector<std::vector<std::vector<real_t>>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden);
std::vector<real_t> m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output);
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_hat, alg.scalarAdd(e, u_hidden)));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_hat, alg.scalarAdd(e, u_output)));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> m_hidden;
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<real_t> m_output;
std::vector<real_t> v_output;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
}
if (m_output.empty() && v_output.empty()) {
m_output.resize(outputWGrad.size());
v_output.resize(outputWGrad.size());
}
m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad));
v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2)));
m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad));
v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2)));
std::vector<std::vector<std::vector<real_t>>> m_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_hidden);
std::vector<std::vector<std::vector<real_t>>> v_hidden_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_hidden);
std::vector<std::vector<std::vector<real_t>>> m_hidden_final = alg.addition(alg.scalarMultiply(b1, m_hidden_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), cumulativeHiddenLayerWGrad));
std::vector<real_t> m_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b1, epoch)), m_output);
std::vector<real_t> v_output_hat = alg.scalarMultiply(1 / (1 - std::pow(b2, epoch)), v_output);
std::vector<real_t> m_output_final = alg.addition(alg.scalarMultiply(b1, m_output_hat), alg.scalarMultiply((1 - b1) / (1 - std::pow(b1, epoch)), outputWGrad));
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden_final, alg.scalarAdd(e, alg.sqrt(v_hidden_hat))));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output_final, alg.scalarAdd(e, alg.sqrt(v_output_hat))));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPANNOld::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
real_t initial_learning_rate = learning_rate;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
// always evaluate the result
// always do forward pass only ONCE at end.
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<std::vector<std::vector<real_t>>> m_hidden;
std::vector<std::vector<std::vector<real_t>>> v_hidden;
std::vector<std::vector<std::vector<real_t>>> v_hidden_hat;
std::vector<real_t> m_output;
std::vector<real_t> v_output;
std::vector<real_t> v_output_hat;
while (true) {
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
auto outputWGrad = std::get<1>(grads);
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
v_hidden_hat = alg.resize(v_hidden_hat, cumulativeHiddenLayerWGrad);
}
if (m_output.empty() && v_output.empty()) {
m_output.resize(outputWGrad.size());
v_output.resize(outputWGrad.size());
v_output_hat.resize(outputWGrad.size());
}
m_hidden = alg.addition(alg.scalarMultiply(b1, m_hidden), alg.scalarMultiply(1 - b1, cumulativeHiddenLayerWGrad));
v_hidden = alg.addition(alg.scalarMultiply(b2, v_hidden), alg.scalarMultiply(1 - b2, alg.exponentiate(cumulativeHiddenLayerWGrad, 2)));
m_output = alg.addition(alg.scalarMultiply(b1, m_output), alg.scalarMultiply(1 - b1, outputWGrad));
v_output = alg.addition(alg.scalarMultiply(b2, v_output), alg.scalarMultiply(1 - b2, alg.exponentiate(outputWGrad, 2)));
v_hidden_hat = alg.max(v_hidden_hat, v_hidden);
v_output_hat = alg.max(v_output_hat, v_output);
std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_hidden, alg.scalarAdd(e, alg.sqrt(v_hidden_hat))));
std::vector<real_t> outputLayerUpdation = alg.scalarMultiply(learning_rate / n, alg.elementWiseDivision(m_output, alg.scalarAdd(e, alg.sqrt(v_output_hat))));
updateParameters(hiddenLayerUpdations, outputLayerUpdation, learning_rate); // subject to change. may want bias to have this matrix too.
y_hat = modelSetTest(inputMiniBatches[i]);
if (UI) {
MLPPANNOld::UI(epoch, cost_prev, y_hat, outputMiniBatches[i]);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPANNOld::score() {
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, outputSet);
}
void MLPPANNOld::save(std::string fileName) {
MLPPUtilities util;
if (!network.empty()) {
util.saveParameters(fileName, network[0].weights, network[0].bias, false, 1);
for (uint32_t i = 1; i < network.size(); i++) {
util.saveParameters(fileName, network[i].weights, network[i].bias, true, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, true, network.size() + 1);
} else {
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, false, network.size() + 1);
}
}
void MLPPANNOld::setLearningRateScheduler(std::string type, real_t decayConstant) {
lrScheduler = type;
MLPPANNOld::decayConstant = decayConstant;
}
void MLPPANNOld::setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate) {
lrScheduler = type;
MLPPANNOld::decayConstant = decayConstant;
MLPPANNOld::dropRate = dropRate;
}
// https://en.wikipedia.org/wiki/Learning_rate
// Learning Rate Decay (C2W2L09) - Andrew Ng - Deep Learning Specialization
real_t MLPPANNOld::applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate) {
if (lrScheduler == "Time") {
return learningRate / (1 + decayConstant * epoch);
} else if (lrScheduler == "Epoch") {
return learningRate * (decayConstant / std::sqrt(epoch));
} else if (lrScheduler == "Step") {
return learningRate * std::pow(decayConstant, int((1 + epoch) / dropRate)); // Utilizing an explicit int conversion implicitly takes the floor.
} else if (lrScheduler == "Exponential") {
return learningRate * std::exp(-decayConstant * epoch);
}
return learningRate;
}
void MLPPANNOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha));
network[0].forwardPass();
} else {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
}
}
void MLPPANNOld::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
if (!network.empty()) {
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
} else {
outputLayer = new MLPPOldOutputLayer(k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
}
}
real_t MLPPANNOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if (!network.empty()) {
for (uint32_t i = 0; i < network.size() - 1; i++) {
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
}
void MLPPANNOld::forwardPass() {
if (!network.empty()) {
network[0].input = inputSet;
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
} else {
outputLayer->input = inputSet;
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
}
void MLPPANNOld::updateParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
MLPPLinAlg alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
if (!network.empty()) {
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta));
for (int i = network.size() - 2; i >= 0; i--) {
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
}
}
}
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPANNOld::computeGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
// std::cout << "BEGIN" << std::endl;
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for (int i = network.size() - 2; i >= 0; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return { cumulativeHiddenLayerWGrad, outputWGrad };
}
void MLPPANNOld::UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
if (!network.empty()) {
for (int i = network.size() - 1; i >= 0; i--) {
std::cout << "Layer " << i + 1 << ": " << std::endl;
MLPPUtilities::UI(network[i].weights, network[i].bias);
}
}
}

73
mlpp/ann/ann_old.h Normal file
View File

@ -0,0 +1,73 @@
#ifndef MLPP_ANN_OLD_H
#define MLPP_ANN_OLD_H
//
// ANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "../hidden_layer/hidden_layer.h"
#include "../output_layer/output_layer.h"
#include "../hidden_layer/hidden_layer_old.h"
#include "../output_layer/output_layer_old.h"
#include <string>
#include <tuple>
#include <vector>
class MLPPANNOld {
public:
MLPPANNOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet);
~MLPPANNOld();
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool NAG, bool UI = false);
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = false);
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = false);
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
real_t score();
void save(std::string fileName);
void setLearningRateScheduler(std::string type, real_t decayConstant);
void setLearningRateScheduler(std::string type, real_t decayConstant, real_t dropRate);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
private:
real_t applyLearningRateScheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate);
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
void forwardPass();
void updateParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate);
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> computeGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
void UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet);
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<MLPPOldHiddenLayer> network;
MLPPOldOutputLayer *outputLayer;
int n;
int k;
std::string lrScheduler;
real_t decayConstant;
real_t dropRate;
};
#endif /* ANN_hpp */

View File

@ -0,0 +1,179 @@
//
// BernoulliNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "bernoulli_nb_old.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPBernoulliNBOld::MLPPBernoulliNBOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet) {
inputSet = p_inputSet;
outputSet = p_outputSet;
class_num = 2;
y_hat.resize(outputSet.size());
Evaluate();
}
std::vector<real_t> MLPPBernoulliNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
for (uint32_t i = 0; i < X.size(); i++) {
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
real_t MLPPBernoulliNBOld::modelTest(std::vector<real_t> x) {
real_t score_0 = 1;
real_t score_1 = 1;
std::vector<int> foundIndices;
for (uint32_t j = 0; j < x.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (x[j] == vocab[k]) {
score_0 *= theta[0][vocab[k]];
score_1 *= theta[1][vocab[k]];
foundIndices.push_back(k);
}
}
}
for (uint32_t i = 0; i < vocab.size(); i++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (vocab[i] == vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 *= 1 - theta[0][vocab[i]];
score_1 *= 1 - theta[1][vocab[i]];
}
}
score_0 *= prior_0;
score_1 *= prior_1;
// Assigning the traning example to a class
if (score_0 > score_1) {
return 0;
} else {
return 1;
}
}
real_t MLPPBernoulliNBOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPBernoulliNBOld::computeVocab() {
MLPPLinAlg alg;
MLPPData data;
vocab = data.vecToSet<real_t>(alg.flatten(inputSet));
}
void MLPPBernoulliNBOld::computeTheta() {
// Resizing theta for the sake of ease & proper access of the elements.
theta.resize(class_num);
// Setting all values in the hasmap by default to 0.
for (int i = class_num - 1; i >= 0; i--) {
for (uint32_t j = 0; j < vocab.size(); j++) {
theta[i][vocab[j]] = 0;
}
}
for (uint32_t i = 0; i < inputSet.size(); i++) {
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
theta[outputSet[i]][inputSet[i][j]]++;
}
}
for (uint32_t i = 0; i < theta.size(); i++) {
for (uint32_t j = 0; j < theta[i].size(); j++) {
if (i == 0) {
theta[i][j] /= prior_0 * y_hat.size();
} else {
theta[i][j] /= prior_1 * y_hat.size();
}
}
}
}
void MLPPBernoulliNBOld::Evaluate() {
for (uint32_t i = 0; i < outputSet.size(); i++) {
// Pr(B | A) * Pr(A)
real_t score_0 = 1;
real_t score_1 = 1;
real_t sum = 0;
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
if (outputSet[ii] == 1) {
sum += outputSet[ii];
}
}
// Easy computation of priors, i.e. Pr(C_k)
prior_1 = sum / y_hat.size();
prior_0 = 1 - prior_1;
// Evaluating Theta...
computeTheta();
// Evaluating the vocab set...
computeVocab();
std::vector<int> foundIndices;
for (uint32_t j = 0; j < inputSet.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (inputSet[i][j] == vocab[k]) {
score_0 += std::log(theta[0][vocab[k]]);
score_1 += std::log(theta[1][vocab[k]]);
foundIndices.push_back(k);
}
}
}
for (uint32_t ii = 0; ii < vocab.size(); ii++) {
bool found = false;
for (uint32_t j = 0; j < foundIndices.size(); j++) {
if (vocab[ii] == vocab[foundIndices[j]]) {
found = true;
}
}
if (!found) {
score_0 += std::log(1 - theta[0][vocab[ii]]);
score_1 += std::log(1 - theta[1][vocab[ii]]);
}
}
score_0 += std::log(prior_0);
score_1 += std::log(prior_1);
score_0 = exp(score_0);
score_1 = exp(score_1);
std::cout << score_0 << std::endl;
std::cout << score_1 << std::endl;
// Assigning the traning example to a class
if (score_0 > score_1) {
y_hat[i] = 0;
} else {
y_hat[i] = 1;
}
}
}

View File

@ -0,0 +1,42 @@
#ifndef MLPP_BERNOULLI_NB_OLD_H
#define MLPP_BERNOULLI_NB_OLD_H
//
// BernoulliNB.hpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "core/math/math_defs.h"
#include <map>
#include <vector>
class MLPPBernoulliNBOld {
public:
MLPPBernoulliNBOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
real_t score();
private:
void computeVocab();
void computeTheta();
void Evaluate();
// Model Params
real_t prior_1 = 0;
real_t prior_0 = 0;
std::vector<std::map<real_t, int>> theta;
std::vector<real_t> vocab;
int class_num;
// Datasets
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
};
#endif /* BernoulliNB_hpp */

View File

@ -0,0 +1,224 @@
//
// CLogLogReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "c_log_log_reg_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPCLogLogRegOld::MLPPCLogLogRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
}
std::vector<real_t> MLPPCLogLogRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPCLogLogRegOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPCLogLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPCLogLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
real_t z = propagate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * exp(z - exp(z)), inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Bias updation
bias -= learning_rate * error * exp(z - exp(z));
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPCLogLogRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
std::vector<real_t> z = propagate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.cloglog(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.cloglog(z, 1))) / n;
forwardPass();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPCLogLogRegOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
real_t MLPPCLogLogRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPCLogLogRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.cloglog(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
std::vector<real_t> MLPPCLogLogRegOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPCLogLogRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.cloglog(alg.dot(weights, x) + bias);
}
real_t MLPPCLogLogRegOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
return alg.dot(weights, x) + bias;
}
// cloglog ( wTx + b )
void MLPPCLogLogRegOld::forwardPass() {
MLPPActivation avn;
z = propagate(inputSet);
y_hat = avn.cloglog(z);
}

View File

@ -0,0 +1,54 @@
#ifndef MLPP_C_LOG_LOG_REG_H
#define MLPP_C_LOG_LOG_REG_H
//
// CLogLogReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPCLogLogRegOld {
public:
MLPPCLogLogRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void MLE(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
private:
void weightInitialization(int k);
void biasInitialization();
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
real_t propagate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> z;
std::vector<real_t> weights;
real_t bias;
int n;
int k;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* CLogLogReg_hpp */

View File

@ -0,0 +1,246 @@
//
// DualSVC.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "dual_svc_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPDualSVCOld::MLPPDualSVCOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C, std::string p_kernel) {
inputSet = p_inputSet;
outputSet = p_outputSet;
n = p_inputSet.size();
k = p_inputSet[0].size();
C = p_C;
kernel = p_kernel;
y_hat.resize(n);
bias = MLPPUtilities::biasInitialization();
alpha = MLPPUtilities::weightInitialization(n); // One alpha for all training examples, as per the lagrangian multipliers.
K = kernelFunction(inputSet, inputSet, kernel); // For now this is unused. When non-linear kernels are added, the K will be manipulated.
}
std::vector<real_t> MLPPDualSVCOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPDualSVCOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPDualSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(alpha, inputSet, outputSet);
alpha = alg.subtraction(alpha, alg.scalarMultiply(learning_rate, cost.dualFormSVMDeriv(alpha, inputSet, outputSet)));
alphaProjection();
// Calculating the bias
real_t biasGradient = 0;
for (uint32_t i = 0; i < alpha.size(); i++) {
real_t sum = 0;
if (alpha[i] < C && alpha[i] > 0) {
for (uint32_t j = 0; j < alpha.size(); j++) {
if (alpha[j] > 0) {
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], inputSet[i]); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
}
biasGradient = (1 - outputSet[i] * sum) / outputSet[i];
break;
}
bias -= biasGradient * learning_rate;
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha, inputSet, outputSet));
MLPPUtilities::UI(alpha, bias);
std::cout << score() << std::endl; // TO DO: DELETE THIS.
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
// void MLPPDualSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI){
// class MLPPCost cost;
// MLPPActivation avn;
// MLPPLinAlg alg;
// MLPPReg regularization;
// real_t cost_prev = 0;
// int epoch = 1;
// while(true){
// std::random_device rd;
// std::default_random_engine generator(rd());
// std::uniform_int_distribution<int> distribution(0, int(n - 1));
// int outputIndex = distribution(generator);
// cost_prev = Cost(alpha, inputSet[outputIndex], outputSet[outputIndex]);
// // Bias updation
// bias -= learning_rate * costDeriv;
// y_hat = Evaluate({inputSet[outputIndex]});
// if(UI) {
// MLPPUtilities::CostInfo(epoch, cost_prev, Cost(alpha));
// MLPPUtilities::UI(weights, bias);
// }
// epoch++;
// if(epoch > max_epoch) { break; }
// }
// forwardPass();
// }
// void MLPPDualSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI){
// class MLPPCost cost;
// MLPPActivation avn;
// MLPPLinAlg alg;
// MLPPReg regularization;
// real_t cost_prev = 0;
// int epoch = 1;
// // Creating the mini-batches
// int n_mini_batch = n/mini_batch_size;
// auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
// while(true){
// for(int i = 0; i < n_mini_batch; i++){
// std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
// std::vector<real_t> z = propagate(inputMiniBatches[i]);
// cost_prev = Cost(z, outputMiniBatches[i], weights, C);
// // Calculating the weight gradients
// weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C))));
// weights = regularization.regWeights(weights, learning_rate/n, 0, "Ridge");
// // Calculating the bias gradients
// bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n;
// forwardPass();
// y_hat = Evaluate(inputMiniBatches[i]);
// if(UI) {
// MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C));
// MLPPUtilities::UI(weights, bias);
// }
// }
// epoch++;
// if(epoch > max_epoch) { break; }
// }
// forwardPass();
// }
real_t MLPPDualSVCOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPDualSVCOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, alpha, bias);
}
real_t MLPPDualSVCOld::Cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y) {
class MLPPCost cost;
return cost.dualFormSVM(alpha, X, y);
}
std::vector<real_t> MLPPDualSVCOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPActivation avn;
return avn.sign(propagate(X));
}
std::vector<real_t> MLPPDualSVCOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
std::vector<real_t> z;
for (uint32_t i = 0; i < X.size(); i++) {
real_t sum = 0;
for (uint32_t j = 0; j < alpha.size(); j++) {
if (alpha[j] != 0) {
sum += alpha[j] * outputSet[j] * alg.dot(inputSet[j], X[i]); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
sum += bias;
z.push_back(sum);
}
return z;
}
real_t MLPPDualSVCOld::Evaluate(std::vector<real_t> x) {
MLPPActivation avn;
return avn.sign(propagate(x));
}
real_t MLPPDualSVCOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
real_t z = 0;
for (uint32_t j = 0; j < alpha.size(); j++) {
if (alpha[j] != 0) {
z += alpha[j] * outputSet[j] * alg.dot(inputSet[j], x); // TO DO: DON'T forget to add non-linear kernelizations.
}
}
z += bias;
return z;
}
void MLPPDualSVCOld::forwardPass() {
MLPPActivation avn;
z = propagate(inputSet);
y_hat = avn.sign(z);
}
void MLPPDualSVCOld::alphaProjection() {
for (uint32_t i = 0; i < alpha.size(); i++) {
if (alpha[i] > C) {
alpha[i] = C;
} else if (alpha[i] < 0) {
alpha[i] = 0;
}
}
}
real_t MLPPDualSVCOld::kernelFunction(std::vector<real_t> u, std::vector<real_t> v, std::string kernel) {
MLPPLinAlg alg;
if (kernel == "Linear") {
return alg.dot(u, v);
}
return 0;
}
std::vector<std::vector<real_t>> MLPPDualSVCOld::kernelFunction(std::vector<std::vector<real_t>> A, std::vector<std::vector<real_t>> B, std::string kernel) {
MLPPLinAlg alg;
if (kernel == "Linear") {
return alg.matmult(inputSet, alg.transpose(inputSet));
}
return std::vector<std::vector<real_t>>();
}

View File

@ -0,0 +1,69 @@
#ifndef MLPP_DUAL_SVC_OLD_H
#define MLPP_DUAL_SVC_OLD_H
//
// DualSVC.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
// http://disp.ee.ntu.edu.tw/~pujols/Support%20Vector%20Machine.pdf
// http://ciml.info/dl/v0_99/ciml-v0_99-ch11.pdf
// Were excellent for the practical intution behind the dual formulation.
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPDualSVCOld {
public:
MLPPDualSVCOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel = "Linear");
MLPPDualSVCOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C, std::string kernel, real_t p, real_t c);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
private:
void init();
real_t Cost(std::vector<real_t> alpha, std::vector<std::vector<real_t>> X, std::vector<real_t> y);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
real_t propagate(std::vector<real_t> x);
void forwardPass();
void alphaProjection();
real_t kernelFunction(std::vector<real_t> v, std::vector<real_t> u, std::string kernel);
std::vector<std::vector<real_t>> kernelFunction(std::vector<std::vector<real_t>> U, std::vector<std::vector<real_t>> V, std::string kernel);
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> z;
std::vector<real_t> y_hat;
real_t bias;
std::vector<real_t> alpha;
std::vector<std::vector<real_t>> K;
real_t C;
int n;
int k;
std::string kernel;
real_t p; // Poly
real_t c; // Poly
// UI Portion
void UI(int epoch, real_t cost_prev);
};
#endif /* DualSVC_hpp */

View File

@ -0,0 +1,247 @@
//
// ExpReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "exp_reg_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../stat/stat.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPExpRegOld::MLPPExpRegOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, std::string p_reg, real_t p_lambda, real_t p_alpha) {
inputSet = p_inputSet;
outputSet = p_outputSet;
n = p_inputSet.size();
k = p_inputSet[0].size();
reg = p_reg;
lambda = p_lambda;
alpha = p_alpha;
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
initial = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
}
std::vector<real_t> MLPPExpRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPExpRegOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPExpRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
for (int i = 0; i < k; i++) {
// Calculating the weight gradient
real_t sum = 0;
for (int j = 0; j < n; j++) {
sum += error[j] * inputSet[j][i] * std::pow(weights[i], inputSet[j][i] - 1);
}
real_t w_gradient = sum / n;
// Calculating the initial gradient
real_t sum2 = 0;
for (int j = 0; j < n; j++) {
sum2 += error[j] * std::pow(weights[i], inputSet[j][i]);
}
real_t i_gradient = sum2 / n;
// Weight/initial updation
weights[i] -= learning_rate * w_gradient;
initial[i] -= learning_rate * i_gradient;
}
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradient
real_t sum = 0;
for (int j = 0; j < n; j++) {
sum += (y_hat[j] - outputSet[j]);
}
real_t b_gradient = sum / n;
// bias updation
bias -= learning_rate * b_gradient;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPExpRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
for (int i = 0; i < k; i++) {
// Calculating the weight gradients
real_t w_gradient = (y_hat - outputSet[outputIndex]) * inputSet[outputIndex][i] * std::pow(weights[i], inputSet[outputIndex][i] - 1);
real_t i_gradient = (y_hat - outputSet[outputIndex]) * std::pow(weights[i], inputSet[outputIndex][i]);
// Weight/initial updation
weights[i] -= learning_rate * w_gradient;
initial[i] -= learning_rate * i_gradient;
}
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
real_t b_gradient = (y_hat - outputSet[outputIndex]);
// Bias updation
bias -= learning_rate * b_gradient;
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPExpRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
for (int j = 0; j < k; j++) {
// Calculating the weight gradient
real_t sum = 0;
for (uint32_t k = 0; k < outputMiniBatches[i].size(); k++) {
sum += error[k] * inputMiniBatches[i][k][j] * std::pow(weights[j], inputMiniBatches[i][k][j] - 1);
}
real_t w_gradient = sum / outputMiniBatches[i].size();
// Calculating the initial gradient
real_t sum2 = 0;
for (uint32_t k = 0; k < outputMiniBatches[i].size(); k++) {
sum2 += error[k] * std::pow(weights[j], inputMiniBatches[i][k][j]);
}
real_t i_gradient = sum2 / outputMiniBatches[i].size();
// Weight/initial updation
weights[j] -= learning_rate * w_gradient;
initial[j] -= learning_rate * i_gradient;
}
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradient
real_t sum = 0;
for (uint32_t j = 0; j < outputMiniBatches[i].size(); j++) {
sum += (y_hat[j] - outputMiniBatches[i][j]);
}
//real_t b_gradient = sum / outputMiniBatches[i].size();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPExpRegOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPExpRegOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, initial, bias);
}
real_t MLPPExpRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPExpRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
y_hat.resize(X.size());
for (uint32_t i = 0; i < X.size(); i++) {
y_hat[i] = 0;
for (uint32_t j = 0; j < X[i].size(); j++) {
y_hat[i] += initial[j] * std::pow(weights[j], X[i][j]);
}
y_hat[i] += bias;
}
return y_hat;
}
real_t MLPPExpRegOld::Evaluate(std::vector<real_t> x) {
real_t y_hat = 0;
for (uint32_t i = 0; i < x.size(); i++) {
y_hat += initial[i] * std::pow(weights[i], x[i]);
}
return y_hat + bias;
}
// a * w^x + b
void MLPPExpRegOld::forwardPass() {
y_hat = Evaluate(inputSet);
}

View File

@ -0,0 +1,50 @@
#ifndef MLPP_EXP_REG_OLD_H
#define MLPP_EXP_REG_OLD_H
//
// ExpReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPExpRegOld {
public:
MLPPExpRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = 1);
void SGD(real_t learning_rate, int max_epoch, bool UI = 1);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
std::vector<real_t> initial;
real_t bias;
int n;
int k;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* ExpReg_hpp */

View File

@ -1,6 +1,6 @@
#ifndef MLPP_GAN_hpp
#define MLPP_GAN_hpp
#ifndef MLPP_GAN_H
#define MLPP_GAN_H
//
// GAN.hpp

287
mlpp/gan/gan_old.cpp Normal file
View File

@ -0,0 +1,287 @@
//
// GAN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "gan_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <cmath>
#include <iostream>
MLPPGAN::MLPPGAN(real_t k, std::vector<std::vector<real_t>> outputSet) :
outputSet(outputSet), n(outputSet.size()), k(k) {
}
MLPPGAN::~MLPPGAN() {
delete outputLayer;
}
std::vector<std::vector<real_t>> MLPPGAN::generateExample(int n) {
MLPPLinAlg alg;
return modelSetTestGenerator(alg.gaussianNoise(n, k));
}
void MLPPGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, alg.onevec(n));
// Training of the discriminator.
std::vector<std::vector<real_t>> generatorInputSet = alg.gaussianNoise(n, k);
std::vector<std::vector<real_t>> discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
discriminatorInputSet.insert(discriminatorInputSet.end(), outputSet.begin(), outputSet.end()); // Fake + real inputs.
std::vector<real_t> y_hat = modelSetTestDiscriminator(discriminatorInputSet);
std::vector<real_t> outputSet = alg.zerovec(n);
std::vector<real_t> outputSetReal = alg.onevec(n);
outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores.
auto dgrads = computeDiscriminatorGradients(y_hat, outputSet);
auto cumulativeDiscriminatorHiddenLayerWGrad = std::get<0>(dgrads);
auto outputDiscriminatorWGrad = std::get<1>(dgrads);
cumulativeDiscriminatorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeDiscriminatorHiddenLayerWGrad);
outputDiscriminatorWGrad = alg.scalarMultiply(learning_rate / n, outputDiscriminatorWGrad);
updateDiscriminatorParameters(cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad, learning_rate);
// Training of the generator.
generatorInputSet = alg.gaussianNoise(n, k);
discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
y_hat = modelSetTestDiscriminator(discriminatorInputSet);
outputSet = alg.onevec(n);
std::vector<std::vector<std::vector<real_t>>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet);
cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeGeneratorHiddenLayerWGrad);
updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate);
forwardPass();
if (UI) {
MLPPGAN::UI(epoch, cost_prev, MLPPGAN::y_hat, alg.onevec(n));
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
real_t MLPPGAN::score() {
MLPPLinAlg alg;
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, alg.onevec(n));
}
void MLPPGAN::save(std::string fileName) {
MLPPUtilities util;
if (!network.empty()) {
util.saveParameters(fileName, network[0].weights, network[0].bias, false, 1);
for (uint32_t i = 1; i < network.size(); i++) {
util.saveParameters(fileName, network[i].weights, network[i].bias, true, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, true, network.size() + 1);
} else {
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, false, network.size() + 1);
}
}
void MLPPGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
network[0].forwardPass();
} else {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
}
}
void MLPPGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
if (!network.empty()) {
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Sigmoid", "LogLoss", network[network.size() - 1].a, weightInit, reg, lambda, alpha);
} else {
outputLayer = new MLPPOldOutputLayer(k, "Sigmoid", "LogLoss", alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha);
}
}
std::vector<std::vector<real_t>> MLPPGAN::modelSetTestGenerator(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
network[0].input = X;
network[0].forwardPass();
for (uint32_t i = 1; i <= network.size() / 2; i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
}
return network[network.size() / 2].a;
}
std::vector<real_t> MLPPGAN::modelSetTestDiscriminator(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
for (uint32_t i = network.size() / 2 + 1; i < network.size(); i++) {
if (i == network.size() / 2 + 1) {
network[i].input = X;
} else {
network[i].input = network[i - 1].a;
}
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
}
outputLayer->forwardPass();
return outputLayer->a;
}
real_t MLPPGAN::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if (!network.empty()) {
for (uint32_t i = 0; i < network.size() - 1; i++) {
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
}
void MLPPGAN::forwardPass() {
MLPPLinAlg alg;
if (!network.empty()) {
network[0].input = alg.gaussianNoise(n, k);
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
} else { // Should never happen, though.
outputLayer->input = alg.gaussianNoise(n, k);
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
}
void MLPPGAN::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
MLPPLinAlg alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
if (!network.empty()) {
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta));
for (int i = static_cast<int>(network.size()) - 2; i > static_cast<int>(network.size()) / 2; i--) {
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
}
}
}
void MLPPGAN::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
MLPPLinAlg alg;
if (!network.empty()) {
for (int i = network.size() / 2; i >= 0; i--) {
//std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl;
//std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl;
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
}
}
}
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPGAN::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
//std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl;
//std::cout << "WEIGHTS SECOND:" << network[network.size() - 1].weights.size() << "x" << network[network.size() - 1].weights[0].size() << std::endl;
for (int i = static_cast<int>(network.size()) - 2; i > static_cast<int>(network.size()) / 2; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return { cumulativeHiddenLayerWGrad, outputWGrad };
}
std::vector<std::vector<std::vector<real_t>>> MLPPGAN::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for (int i = network.size() - 2; i >= 0; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return cumulativeHiddenLayerWGrad;
}
void MLPPGAN::UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
if (!network.empty()) {
for (int i = network.size() - 1; i >= 0; i--) {
std::cout << "Layer " << i + 1 << ": " << std::endl;
MLPPUtilities::UI(network[i].weights, network[i].bias);
}
}
}

59
mlpp/gan/gan_old.h Normal file
View File

@ -0,0 +1,59 @@
#ifndef MLPP_GAN_OLD_hpp
#define MLPP_GAN_OLD_hpp
//
// GAN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "../hidden_layer/hidden_layer.h"
#include "../output_layer/output_layer.h"
#include "../hidden_layer/hidden_layer_old.h"
#include "../output_layer/output_layer_old.h"
#include <string>
#include <tuple>
#include <vector>
class MLPPGAN {
public:
MLPPGAN(real_t k, std::vector<std::vector<real_t>> outputSet);
~MLPPGAN();
std::vector<std::vector<real_t>> generateExample(int n);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
real_t score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
private:
std::vector<std::vector<real_t>> modelSetTestGenerator(std::vector<std::vector<real_t>> X); // Evaluator for the generator of the gan.
std::vector<real_t> modelSetTestDiscriminator(std::vector<std::vector<real_t>> X); // Evaluator for the discriminator of the gan.
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
void forwardPass();
void updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate);
void updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate);
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
std::vector<std::vector<std::vector<real_t>>> computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
void UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet);
std::vector<std::vector<real_t>> outputSet;
std::vector<real_t> y_hat;
std::vector<MLPPOldHiddenLayer> network;
MLPPOldOutputLayer *outputLayer;
int n;
int k;
};
#endif /* GAN_hpp */

View File

@ -0,0 +1,89 @@
//
// GaussianNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "gaussian_nb_old.h"
#include "../lin_alg/lin_alg.h"
#include "../stat/stat.h"
#include "../utilities/utilities.h"
#include <algorithm>
#include <iostream>
#include <random>
MLPPGaussianNBOld::MLPPGaussianNBOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, int p_class_num) {
inputSet = p_inputSet;
outputSet = p_outputSet;
class_num = p_class_num;
y_hat.resize(outputSet.size());
Evaluate();
}
std::vector<real_t> MLPPGaussianNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
for (uint32_t i = 0; i < X.size(); i++) {
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
real_t MLPPGaussianNBOld::modelTest(std::vector<real_t> x) {
real_t score[class_num];
real_t y_hat_i = 1;
for (int i = class_num - 1; i >= 0; i--) {
y_hat_i += std::log(priors[i] * (1 / sqrt(2 * M_PI * sigma[i] * sigma[i])) * exp(-(x[i] * mu[i]) * (x[i] * mu[i]) / (2 * sigma[i] * sigma[i])));
score[i] = exp(y_hat_i);
}
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
}
real_t MLPPGaussianNBOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPGaussianNBOld::Evaluate() {
MLPPStat stat;
MLPPLinAlg alg;
// Computing mu_k_y and sigma_k_y
mu.resize(class_num);
sigma.resize(class_num);
for (int i = class_num - 1; i >= 0; i--) {
std::vector<real_t> set;
for (uint32_t j = 0; j < inputSet.size(); j++) {
for (uint32_t k = 0; k < inputSet[j].size(); k++) {
if (outputSet[j] == i) {
set.push_back(inputSet[j][k]);
}
}
}
mu[i] = stat.mean(set);
sigma[i] = stat.standardDeviation(set);
}
// Priors
priors.resize(class_num);
for (uint32_t i = 0; i < outputSet.size(); i++) {
priors[int(outputSet[i])]++;
}
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
for (uint32_t i = 0; i < outputSet.size(); i++) {
real_t score[class_num];
real_t y_hat_i = 1;
for (int j = class_num - 1; j >= 0; j--) {
for (uint32_t k = 0; k < inputSet[i].size(); k++) {
y_hat_i += std::log(priors[j] * (1 / sqrt(2 * M_PI * sigma[j] * sigma[j])) * exp(-(inputSet[i][k] * mu[j]) * (inputSet[i][k] * mu[j]) / (2 * sigma[j] * sigma[j])));
}
score[j] = exp(y_hat_i);
std::cout << score[j] << std::endl;
}
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
std::cout << std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t))) << std::endl;
}
}

View File

@ -0,0 +1,37 @@
#ifndef MLPP_GAUSSIAN_NB_OLD_H
#define MLPP_GAUSSIAN_NB_OLD_H
//
// GaussianNB.hpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "core/math/math_defs.h"
#include <vector>
class MLPPGaussianNBOld {
public:
MLPPGaussianNBOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
real_t score();
private:
void Evaluate();
int class_num;
std::vector<real_t> priors;
std::vector<real_t> mu;
std::vector<real_t> sigma;
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
};
#endif /* GaussianNB_hpp */

View File

@ -0,0 +1,598 @@
//
// LinReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "lin_reg_old.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../stat/stat.h"
#include "../utilities/utilities.h"
#include <cmath>
#include <iostream>
#include <random>
MLPPLinRegOld::MLPPLinRegOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, std::string p_reg, real_t p_lambda, real_t p_alpha) {
inputSet = p_inputSet;
outputSet = p_outputSet;
n = p_inputSet.size();
k = p_inputSet[0].size();
reg = p_reg;
lambda = p_lambda;
alpha = p_alpha;
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
}
std::vector<real_t> MLPPLinRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPLinRegOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPLinRegOld::NewtonRaphson(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight gradients (2nd derivative)
std::vector<real_t> first_derivative = alg.mat_vec_mult(alg.transpose(inputSet), error);
std::vector<std::vector<real_t>> second_derivative = alg.matmult(alg.transpose(inputSet), inputSet);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(alg.inverse(second_derivative)), first_derivative)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients (2nd derivative)
bias -= learning_rate * alg.sum_elements(error) / n; // We keep this the same. The 2nd derivative is just [1].
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPLinRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPLinRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
// Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Bias updation
bias -= learning_rate * error;
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Momentum.
std::vector<real_t> v = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad));
weights = alg.subtraction(weights, v);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Momentum.
std::vector<real_t> v = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
weights = alg.subtraction(weights, alg.scalarMultiply(gamma, v)); // "Aposterori" calculation
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
v = alg.addition(alg.scalarMultiply(gamma, v), alg.scalarMultiply(learning_rate, weight_grad));
weights = alg.subtraction(weights, v);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adagrad.
std::vector<real_t> v = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
v = alg.hadamard_product(weight_grad, weight_grad);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(weight_grad, alg.sqrt(alg.scalarAdd(e, v)))));
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI) {
// Adagrad upgrade. Momentum is applied.
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adagrad.
std::vector<real_t> v = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
v = alg.addition(alg.scalarMultiply(b1, v), alg.scalarMultiply(1 - b1, alg.hadamard_product(weight_grad, weight_grad)));
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(weight_grad, alg.sqrt(alg.scalarAdd(e, v)))));
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<real_t> m = alg.zerovec(weights.size());
std::vector<real_t> v = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad));
v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2)));
std::vector<real_t> m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m);
std::vector<real_t> v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, alg.scalarAdd(e, alg.sqrt(v_hat)))));
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
std::vector<real_t> m = alg.zerovec(weights.size());
std::vector<real_t> u = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad));
u = alg.max(alg.scalarMultiply(b2, u), alg.abs(weight_grad));
std::vector<real_t> m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_hat, u)));
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Initializing necessary components for Adam.
std::vector<real_t> m = alg.zerovec(weights.size());
std::vector<real_t> v = alg.zerovec(weights.size());
std::vector<real_t> m_final = alg.zerovec(weights.size());
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
std::vector<real_t> gradient = alg.scalarMultiply(1 / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error));
std::vector<real_t> RegDerivTerm = regularization.regDerivTerm(weights, lambda, alpha, reg);
std::vector<real_t> weight_grad = alg.addition(gradient, RegDerivTerm); // Weight_grad_final
m = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply(1 - b1, weight_grad));
v = alg.addition(alg.scalarMultiply(b2, v), alg.scalarMultiply(1 - b2, alg.exponentiate(weight_grad, 2)));
m_final = alg.addition(alg.scalarMultiply(b1, m), alg.scalarMultiply((1 - b1) / (1 - pow(b1, epoch)), weight_grad));
std::vector<real_t> m_hat = alg.scalarMultiply(1 / (1 - pow(b1, epoch)), m);
std::vector<real_t> v_hat = alg.scalarMultiply(1 / (1 - pow(b2, epoch)), v);
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate, alg.elementWiseDivision(m_final, alg.scalarAdd(e, alg.sqrt(v_hat)))));
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size(); // As normal
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLinRegOld::normalEquation() {
MLPPLinAlg alg;
MLPPStat stat;
std::vector<real_t> x_means;
std::vector<std::vector<real_t>> inputSetT = alg.transpose(inputSet);
x_means.resize(inputSetT.size());
for (uint32_t i = 0; i < inputSetT.size(); i++) {
x_means[i] = (stat.mean(inputSetT[i]));
}
//try {
std::vector<real_t> temp;
temp.resize(k);
temp = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet));
if (std::isnan(temp[0])) {
//throw 99;
//TODO ERR_FAIL_COND
std::cout << "ERR: Resulting matrix was noninvertible/degenerate, and so the normal equation could not be performed. Try utilizing gradient descent." << std::endl;
return;
} else {
if (reg == "Ridge") {
weights = alg.mat_vec_mult(alg.inverse(alg.addition(alg.matmult(alg.transpose(inputSet), inputSet), alg.scalarMultiply(lambda, alg.identity(k)))), alg.mat_vec_mult(alg.transpose(inputSet), outputSet));
} else {
weights = alg.mat_vec_mult(alg.inverse(alg.matmult(alg.transpose(inputSet), inputSet)), alg.mat_vec_mult(alg.transpose(inputSet), outputSet));
}
bias = stat.mean(outputSet) - alg.dot(weights, x_means);
forwardPass();
}
//} catch (int err_num) {
// std::cout << "ERR " << err_num << ": Resulting matrix was noninvertible/degenerate, and so the normal equation could not be performed. Try utilizing gradient descent." << std::endl;
//}
}
real_t MLPPLinRegOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPLinRegOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
}
real_t MLPPLinRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPLinRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
}
real_t MLPPLinRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
return alg.dot(weights, x) + bias;
}
// wTx + b
void MLPPLinRegOld::forwardPass() {
y_hat = Evaluate(inputSet);
}

View File

@ -0,0 +1,60 @@
#ifndef MLPP_LIN_REG_OLD_H
#define MLPP_LIN_REG_OLD_H
//
// LinReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPLinRegOld {
public:
MLPPLinRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void NewtonRaphson(real_t learning_rate, int max_epoch, bool UI);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void Momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
void NAG(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool UI = false);
void Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool UI = false);
void Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool UI = false);
void Adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
void normalEquation();
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
int n;
int k;
// Regularization Params
std::string reg;
int lambda;
int alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* LinReg_hpp */

View File

@ -0,0 +1,213 @@
//
// LogReg.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "log_reg_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPLogRegOld::MLPPLogRegOld(std::vector<std::vector<real_t>> pinputSet, std::vector<real_t> poutputSet, std::string preg, real_t plambda, real_t palpha) {
inputSet = pinputSet;
outputSet = poutputSet;
n = pinputSet.size();
k = pinputSet[0].size();
reg = preg;
lambda = plambda;
alpha = palpha;
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
}
std::vector<real_t> MLPPLogRegOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
real_t MLPPLogRegOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
void MLPPLogRegOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPLogRegOld::MLE(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
std::vector<real_t> error = alg.subtraction(outputSet, y_hat);
// Calculating the weight gradients
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elements(error) / n;
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPLogRegOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
real_t error = y_hat - outputSet[outputIndex];
// Weight updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error, inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Bias updation
bias -= learning_rate * error;
y_hat = Evaluate({ inputSet[outputIndex] });
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPLogRegOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto bacthes = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(bacthes);
auto outputMiniBatches = std::get<1>(bacthes);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches[i].size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), error)));
weights = regularization.regWeights(weights, lambda, alpha, reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(error) / outputMiniBatches[i].size();
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPLogRegOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPLogRegOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
}
real_t MLPPLogRegOld::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.LogLoss(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
}
std::vector<real_t> MLPPLogRegOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.sigmoid(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
}
real_t MLPPLogRegOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.sigmoid(alg.dot(weights, x) + bias);
}
// sigmoid ( wTx + b )
void MLPPLogRegOld::forwardPass() {
y_hat = Evaluate(inputSet);
}

View File

@ -0,0 +1,51 @@
#ifndef MLPP_LOG_REG_OLD_H
#define MLPP_LOG_REG_OLD_H
//
// LogReg.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPLogRegOld {
public:
MLPPLogRegOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void MLE(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
int n;
int k;
real_t learning_rate;
// Regularization Params
std::string reg;
real_t lambda; /* Regularization Parameter */
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* LogReg_hpp */

189
mlpp/mann/mann_old.cpp Normal file
View File

@ -0,0 +1,189 @@
//
// MANN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "mann_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
MLPPMANNOld::MLPPMANNOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_output(outputSet[0].size()) {
}
MLPPMANNOld::~MLPPMANNOld() {
delete outputLayer;
}
std::vector<std::vector<real_t>> MLPPMANNOld::modelSetTest(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
network[0].input = X;
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
} else {
outputLayer->input = X;
}
outputLayer->forwardPass();
return outputLayer->a;
}
std::vector<real_t> MLPPMANNOld::modelTest(std::vector<real_t> x) {
if (!network.empty()) {
network[0].Test(x);
for (uint32_t i = 1; i < network.size(); i++) {
network[i].Test(network[i - 1].a_test);
}
outputLayer->Test(network[network.size() - 1].a_test);
} else {
outputLayer->Test(x);
}
return outputLayer->a_test;
}
void MLPPMANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
if (outputLayer->activation == "Softmax") {
outputLayer->delta = alg.subtraction(y_hat, outputSet);
} else {
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
}
std::vector<std::vector<real_t>> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta);
outputLayer->weights = alg.subtraction(outputLayer->weights, alg.scalarMultiply(learning_rate / n, outputWGrad));
outputLayer->weights = regularization.regWeights(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
outputLayer->bias = alg.subtractMatrixRows(outputLayer->bias, alg.scalarMultiply(learning_rate / n, outputLayer->delta));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.matmult(outputLayer->delta, alg.transpose(outputLayer->weights)), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad));
network[network.size() - 1].weights = regularization.regWeights(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta));
for (int i = network.size() - 2; i >= 0; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
network[i].weights = alg.subtraction(network[i].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad));
network[i].weights = regularization.regWeights(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
}
}
forwardPass();
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
if (!network.empty()) {
std::cout << "Layer " << network.size() << ": " << std::endl;
for (int i = network.size() - 1; i >= 0; i--) {
std::cout << "Layer " << i + 1 << ": " << std::endl;
MLPPUtilities::UI(network[i].weights, network[i].bias);
}
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
real_t MLPPMANNOld::score() {
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, outputSet);
}
void MLPPMANNOld::save(std::string fileName) {
MLPPUtilities util;
if (!network.empty()) {
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
for (uint32_t i = 1; i < network.size(); i++) {
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
} else {
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
}
}
void MLPPMANNOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha));
network[0].forwardPass();
} else {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
}
}
void MLPPMANNOld::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
if (!network.empty()) {
outputLayer = new MLPPOldMultiOutputLayer(n_output, network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
} else {
outputLayer = new MLPPOldMultiOutputLayer(n_output, k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
}
}
real_t MLPPMANNOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
class MLPPCost cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if (!network.empty()) {
for (uint32_t i = 0; i < network.size() - 1; i++) {
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
}
void MLPPMANNOld::forwardPass() {
if (!network.empty()) {
network[0].input = inputSet;
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
} else {
outputLayer->input = inputSet;
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
}

51
mlpp/mann/mann_old.h Normal file
View File

@ -0,0 +1,51 @@
#ifndef MLPP_MANN_OLD_H
#define MLPP_MANN_OLD_H
//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
#include "../hidden_layer/hidden_layer_old.h"
#include "../multi_output_layer/multi_output_layer_old.h"
#include <string>
#include <vector>
class MLPPMANNOld {
public:
MLPPMANNOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet);
~MLPPMANNOld();
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
std::vector<real_t> modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
real_t score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
private:
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<std::vector<real_t>> outputSet;
std::vector<std::vector<real_t>> y_hat;
std::vector<MLPPOldHiddenLayer> network;
MLPPOldMultiOutputLayer *outputLayer;
int n;
int k;
int n_output;
};
#endif /* MANN_hpp */

View File

@ -0,0 +1,121 @@
//
// MultinomialNB.cpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "multinomial_nb_old.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <algorithm>
#include <iostream>
#include <random>
MLPPMultinomialNBOld::MLPPMultinomialNBOld(std::vector<std::vector<real_t>> pinputSet, std::vector<real_t> poutputSet, int pclass_num) {
inputSet = pinputSet;
outputSet = poutputSet;
class_num = pclass_num;
y_hat.resize(outputSet.size());
Evaluate();
}
std::vector<real_t> MLPPMultinomialNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
std::vector<real_t> y_hat;
for (uint32_t i = 0; i < X.size(); i++) {
y_hat.push_back(modelTest(X[i]));
}
return y_hat;
}
real_t MLPPMultinomialNBOld::modelTest(std::vector<real_t> x) {
real_t score[class_num];
computeTheta();
for (uint32_t j = 0; j < x.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (x[j] == vocab[k]) {
for (int p = class_num - 1; p >= 0; p--) {
score[p] += std::log(theta[p][vocab[k]]);
}
}
}
}
for (uint32_t i = 0; i < priors.size(); i++) {
score[i] += std::log(priors[i]);
}
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
}
real_t MLPPMultinomialNBOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPMultinomialNBOld::computeTheta() {
// Resizing theta for the sake of ease & proper access of the elements.
theta.resize(class_num);
// Setting all values in the hasmap by default to 0.
for (int i = class_num - 1; i >= 0; i--) {
for (uint32_t j = 0; j < vocab.size(); j++) {
theta[i][vocab[j]] = 0;
}
}
for (uint32_t i = 0; i < inputSet.size(); i++) {
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
theta[outputSet[i]][inputSet[i][j]]++;
}
}
for (uint32_t i = 0; i < theta.size(); i++) {
for (uint32_t j = 0; j < theta[i].size(); j++) {
theta[i][j] /= priors[i] * y_hat.size();
}
}
}
void MLPPMultinomialNBOld::Evaluate() {
MLPPLinAlg alg;
for (uint32_t i = 0; i < outputSet.size(); i++) {
// Pr(B | A) * Pr(A)
real_t score[class_num];
// Easy computation of priors, i.e. Pr(C_k)
priors.resize(class_num);
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
priors[int(outputSet[ii])]++;
}
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
// Evaluating Theta...
computeTheta();
for (uint32_t j = 0; j < inputSet.size(); j++) {
for (uint32_t k = 0; k < vocab.size(); k++) {
if (inputSet[i][j] == vocab[k]) {
for (int p = class_num - 1; p >= 0; p--) {
score[p] += std::log(theta[i][vocab[k]]);
}
}
}
}
for (uint32_t ii = 0; ii < priors.size(); ii++) {
score[ii] += std::log(priors[ii]);
score[ii] = exp(score[ii]);
}
for (int ii = 0; ii < 2; ii++) {
std::cout << score[ii] << std::endl;
}
// Assigning the traning example's y_hat to a class
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
}
}

View File

@ -0,0 +1,40 @@
#ifndef MLPP_MULTINOMIAL_NB_OLD_H
#define MLPP_MULTINOMIAL_NB_OLD_H
//
// MultinomialNB.hpp
//
// Created by Marc Melikyan on 1/17/21.
//
#include "core/math/math_defs.h"
#include <map>
#include <vector>
class MLPPMultinomialNBOld {
public:
MLPPMultinomialNBOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, int class_num);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
real_t score();
private:
void computeTheta();
void Evaluate();
// Model Params
std::vector<real_t> priors;
std::vector<std::map<real_t, int>> theta;
std::vector<real_t> vocab;
int class_num;
// Datasets
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
};
#endif /* MultinomialNB_hpp */

View File

@ -0,0 +1,309 @@
//
// SoftmaxNet.cpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "softmax_net_old.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../data/data.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPSoftmaxNetOld::MLPPSoftmaxNetOld(std::vector<std::vector<real_t>> pinputSet, std::vector<std::vector<real_t>> poutputSet, int pn_hidden, std::string preg, real_t plambda, real_t palpha) {
inputSet = pinputSet;
outputSet = poutputSet;
n = pinputSet.size();
k = pinputSet[0].size();
n_hidden = pn_hidden;
n_class = poutputSet[0].size();
reg = preg;
lambda = plambda;
alpha = palpha;
y_hat.resize(n);
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
weights2 = MLPPUtilities::weightInitialization(n_hidden, n_class);
bias1 = MLPPUtilities::biasInitialization(n_hidden);
bias2 = MLPPUtilities::biasInitialization(n_class);
}
std::vector<real_t> MLPPSoftmaxNetOld::modelTest(std::vector<real_t> x) {
return Evaluate(x);
}
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
}
void MLPPSoftmaxNetOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
// Calculating the errors
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputSet);
// Calculating the weight/bias gradients for layer 2
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(a2), error);
// weights and bias updation for layer 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
bias2 = alg.subtractMatrixRows(bias2, alg.scalarMultiply(learning_rate, error));
//Calculating the weight/bias for layer 1
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(weights2));
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2);
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate, D1_2));
forwardPass();
// UI PORTION
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
}
void MLPPSoftmaxNetOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
std::vector<real_t> y_hat = Evaluate(inputSet[outputIndex]);
auto prop_res = propagate(inputSet[outputIndex]);
auto z2 = std::get<0>(prop_res);
auto a2 = std::get<1>(prop_res);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
std::vector<real_t> error = alg.subtraction(y_hat, outputSet[outputIndex]);
// Weight updation for layer 2
std::vector<std::vector<real_t>> D2_1 = alg.outerProduct(error, a2);
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1)));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
// Bias updation for layer 2
bias2 = alg.subtraction(bias2, alg.scalarMultiply(learning_rate, error));
// Weight updation for layer 1
std::vector<real_t> D1_1 = alg.mat_vec_mult(weights2, error);
std::vector<real_t> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true));
std::vector<std::vector<real_t>> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2);
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
// Bias updation for layer 1
bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2));
y_hat = Evaluate(inputSet[outputIndex]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
void MLPPSoftmaxNetOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(batches);
auto outputMiniBatches = std::get<1>(batches);
// Creating the mini-batches
for (int i = 0; i < n_mini_batch; i++) {
std::vector<std::vector<real_t>> currentInputSet;
std::vector<std::vector<real_t>> currentOutputSet;
for (int j = 0; j < n / n_mini_batch; j++) {
currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]);
currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]);
}
inputMiniBatches.push_back(currentInputSet);
outputMiniBatches.push_back(currentOutputSet);
}
if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) {
for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) {
inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]);
outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]);
}
}
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<std::vector<real_t>> y_hat = Evaluate(inputMiniBatches[i]);
auto propagate_res = propagate(inputMiniBatches[i]);
auto z2 = std::get<0>(propagate_res);
auto a2 = std::get<1>(propagate_res);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
// Calculating the errors
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputMiniBatches[i]);
// Calculating the weight/bias gradients for layer 2
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(a2), error);
// weights and bias updation for layser 2
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
// Bias Updation for layer 2
bias2 = alg.subtractMatrixRows(bias2, alg.scalarMultiply(learning_rate, error));
//Calculating the weight/bias for layer 1
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(weights2));
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2);
// weight an bias updation for layer 1
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate, D1_2));
y_hat = Evaluate(inputMiniBatches[i]);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
std::cout << "Layer 1:" << std::endl;
MLPPUtilities::UI(weights1, bias1);
std::cout << "Layer 2:" << std::endl;
MLPPUtilities::UI(weights2, bias2);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
}
real_t MLPPSoftmaxNetOld::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
}
void MLPPSoftmaxNetOld::save(std::string fileName) {
MLPPUtilities util;
util.saveParameters(fileName, weights1, bias1, 0, 1);
util.saveParameters(fileName, weights2, bias2, 1, 2);
}
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::getEmbeddings() {
return weights1;
}
real_t MLPPSoftmaxNetOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
MLPPReg regularization;
MLPPData data;
class MLPPCost cost;
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg);
}
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::Evaluate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
return avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, weights2), bias2));
}
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPSoftmaxNetOld::propagate(std::vector<std::vector<real_t>> X) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
return { z2, a2 };
}
std::vector<real_t> MLPPSoftmaxNetOld::Evaluate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
return avn.adjSoftmax(alg.addition(alg.mat_vec_mult(alg.transpose(weights2), a2), bias2));
}
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPSoftmaxNetOld::propagate(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
std::vector<real_t> a2 = avn.sigmoid(z2);
return { z2, a2 };
}
void MLPPSoftmaxNetOld::forwardPass() {
MLPPLinAlg alg;
MLPPActivation avn;
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
a2 = avn.sigmoid(z2);
y_hat = avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, weights2), bias2));
}

View File

@ -0,0 +1,60 @@
#ifndef MLPP_SOFTMAX_NET_OLD_H
#define MLPP_SOFTMAX_NET_OLD_H
//
// SoftmaxNet.hpp
//
// Created by Marc Melikyan on 10/2/20.
//
#include "core/math/math_defs.h"
#include <string>
#include <vector>
class MLPPSoftmaxNetOld {
public:
MLPPSoftmaxNetOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet, int n_hidden, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelTest(std::vector<real_t> x);
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
real_t score();
void save(std::string fileName);
std::vector<std::vector<real_t>> getEmbeddings(); // This class is used (mostly) for word2Vec. This function returns our embeddings.
private:
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
std::vector<std::vector<real_t>> Evaluate(std::vector<std::vector<real_t>> X);
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> propagate(std::vector<std::vector<real_t>> X);
std::vector<real_t> Evaluate(std::vector<real_t> x);
std::tuple<std::vector<real_t>, std::vector<real_t>> propagate(std::vector<real_t> x);
void forwardPass();
std::vector<std::vector<real_t>> inputSet;
std::vector<std::vector<real_t>> outputSet;
std::vector<std::vector<real_t>> y_hat;
std::vector<std::vector<real_t>> weights1;
std::vector<std::vector<real_t>> weights2;
std::vector<real_t> bias1;
std::vector<real_t> bias2;
std::vector<std::vector<real_t>> z2;
std::vector<std::vector<real_t>> a2;
int n;
int k;
int n_class;
int n_hidden;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
};
#endif /* SoftmaxNet_hpp */