mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
313 lines
11 KiB
C++
313 lines
11 KiB
C++
/*************************************************************************/
|
|
/* hidden_layer.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* PMLPP Machine Learning Library */
|
|
/* https://github.com/Relintai/pmlpp */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2023-present Péter Magyar. */
|
|
/* Copyright (c) 2022-2023 Marc Melikyan */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "hidden_layer.h"
|
|
#include "../activation/activation.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
int MLPPHiddenLayer::get_n_hidden() const {
|
|
return _n_hidden;
|
|
}
|
|
void MLPPHiddenLayer::set_n_hidden(const int val) {
|
|
_n_hidden = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const {
|
|
return _activation;
|
|
}
|
|
void MLPPHiddenLayer::set_activation(const MLPPActivation::ActivationFunction val) {
|
|
_activation = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPHiddenLayer::get_input() {
|
|
return _input;
|
|
}
|
|
void MLPPHiddenLayer::set_input(const Ref<MLPPMatrix> &val) {
|
|
_input = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPHiddenLayer::get_weights() {
|
|
return _weights;
|
|
}
|
|
void MLPPHiddenLayer::set_weights(const Ref<MLPPMatrix> &val) {
|
|
_weights = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPHiddenLayer::MLPPHiddenLayer::get_bias() {
|
|
return _bias;
|
|
}
|
|
void MLPPHiddenLayer::set_bias(const Ref<MLPPVector> &val) {
|
|
_bias = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPHiddenLayer::get_z() {
|
|
return _z;
|
|
}
|
|
void MLPPHiddenLayer::set_z(const Ref<MLPPMatrix> &val) {
|
|
_z = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPHiddenLayer::get_a() {
|
|
return _a;
|
|
}
|
|
void MLPPHiddenLayer::set_a(const Ref<MLPPMatrix> &val) {
|
|
_a = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPHiddenLayer::get_z_test() {
|
|
return _z_test;
|
|
}
|
|
void MLPPHiddenLayer::set_z_test(const Ref<MLPPVector> &val) {
|
|
_z_test = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPVector> MLPPHiddenLayer::get_a_test() {
|
|
return _a_test;
|
|
}
|
|
void MLPPHiddenLayer::set_a_test(const Ref<MLPPVector> &val) {
|
|
_a_test = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
Ref<MLPPMatrix> MLPPHiddenLayer::get_delta() {
|
|
return _delta;
|
|
}
|
|
void MLPPHiddenLayer::set_delta(const Ref<MLPPMatrix> &val) {
|
|
_delta = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const {
|
|
return _reg;
|
|
}
|
|
void MLPPHiddenLayer::set_reg(const MLPPReg::RegularizationType val) {
|
|
_reg = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
real_t MLPPHiddenLayer::get_lambda() const {
|
|
return _lambda;
|
|
}
|
|
void MLPPHiddenLayer::set_lambda(const real_t val) {
|
|
_lambda = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
real_t MLPPHiddenLayer::get_alpha() const {
|
|
return _alpha;
|
|
}
|
|
void MLPPHiddenLayer::set_alpha(const real_t val) {
|
|
_alpha = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const {
|
|
return _weight_init;
|
|
}
|
|
void MLPPHiddenLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) {
|
|
_weight_init = val;
|
|
_initialized = false;
|
|
}
|
|
|
|
bool MLPPHiddenLayer::is_initialized() {
|
|
return _initialized;
|
|
}
|
|
void MLPPHiddenLayer::initialize() {
|
|
if (_initialized) {
|
|
return;
|
|
}
|
|
|
|
_weights->resize(Size2i(_n_hidden, _input->size().x));
|
|
_bias->resize(_n_hidden);
|
|
|
|
MLPPUtilities utils;
|
|
|
|
utils.weight_initializationm(_weights, _weight_init);
|
|
utils.bias_initializationv(_bias);
|
|
|
|
_initialized = true;
|
|
}
|
|
|
|
void MLPPHiddenLayer::forward_pass() {
|
|
if (!_initialized) {
|
|
initialize();
|
|
}
|
|
|
|
MLPPActivation avn;
|
|
|
|
_z->multb(_input, _weights);
|
|
_z->add_vec(_bias);
|
|
|
|
_a = avn.run_activation_norm_matrix(_activation, _z);
|
|
}
|
|
|
|
void MLPPHiddenLayer::test(const Ref<MLPPVector> &x) {
|
|
if (!_initialized) {
|
|
initialize();
|
|
}
|
|
|
|
MLPPActivation avn;
|
|
|
|
_z_test = _weights->transposen()->mult_vec(x);
|
|
_z_test->add(_bias);
|
|
|
|
_a_test = avn.run_activation_norm_vector(_activation, _z_test);
|
|
}
|
|
|
|
MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref<MLPPMatrix> p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
|
|
_n_hidden = p_n_hidden;
|
|
_activation = p_activation;
|
|
|
|
_input = p_input;
|
|
|
|
// Regularization Params
|
|
_reg = p_reg;
|
|
_lambda = p_lambda; /* Regularization Parameter */
|
|
_alpha = p_alpha; /* This is the controlling param for Elastic Net*/
|
|
|
|
_weight_init = p_weight_init;
|
|
|
|
_z.instance();
|
|
_a.instance();
|
|
|
|
_z_test.instance();
|
|
_a_test.instance();
|
|
|
|
_delta.instance();
|
|
|
|
_weights.instance();
|
|
_bias.instance();
|
|
|
|
_initialized = false;
|
|
|
|
initialize();
|
|
}
|
|
|
|
MLPPHiddenLayer::MLPPHiddenLayer() {
|
|
_n_hidden = 0;
|
|
_activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR;
|
|
|
|
// Regularization Params
|
|
//reg = 0;
|
|
_lambda = 0; /* Regularization Parameter */
|
|
_alpha = 0; /* This is the controlling param for Elastic Net*/
|
|
|
|
_weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT;
|
|
|
|
_z.instance();
|
|
_a.instance();
|
|
|
|
_z_test.instance();
|
|
_a_test.instance();
|
|
|
|
_delta.instance();
|
|
|
|
_weights.instance();
|
|
_bias.instance();
|
|
|
|
_initialized = false;
|
|
}
|
|
MLPPHiddenLayer::~MLPPHiddenLayer() {
|
|
}
|
|
|
|
void MLPPHiddenLayer::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPHiddenLayer::get_n_hidden);
|
|
ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPHiddenLayer::set_n_hidden);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_activation"), &MLPPHiddenLayer::get_activation);
|
|
ClassDB::bind_method(D_METHOD("set_activation", "val"), &MLPPHiddenLayer::set_activation);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "activation"), "set_activation", "get_activation");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_input"), &MLPPHiddenLayer::get_input);
|
|
ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPHiddenLayer::set_input);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_weights"), &MLPPHiddenLayer::get_weights);
|
|
ClassDB::bind_method(D_METHOD("set_weights", "val"), &MLPPHiddenLayer::set_weights);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_weights", "get_weights");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_bias"), &MLPPHiddenLayer::get_bias);
|
|
ClassDB::bind_method(D_METHOD("set_bias", "val"), &MLPPHiddenLayer::set_bias);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "bias", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_bias", "get_bias");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_z"), &MLPPHiddenLayer::get_z);
|
|
ClassDB::bind_method(D_METHOD("set_z", "val"), &MLPPHiddenLayer::set_z);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_z", "get_z");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_a"), &MLPPHiddenLayer::get_a);
|
|
ClassDB::bind_method(D_METHOD("set_a", "val"), &MLPPHiddenLayer::set_a);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_a", "get_a");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_z_test"), &MLPPHiddenLayer::get_z_test);
|
|
ClassDB::bind_method(D_METHOD("set_z_test", "val"), &MLPPHiddenLayer::set_z_test);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z_test", "get_z_test");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_a_test"), &MLPPHiddenLayer::get_a_test);
|
|
ClassDB::bind_method(D_METHOD("set_a_test", "val"), &MLPPHiddenLayer::set_a_test);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a_test", "get_a_test");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_delta"), &MLPPHiddenLayer::get_delta);
|
|
ClassDB::bind_method(D_METHOD("set_delta", "val"), &MLPPHiddenLayer::set_delta);
|
|
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "delta", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_delta", "get_delta");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPHiddenLayer::get_reg);
|
|
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPHiddenLayer::set_reg);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPHiddenLayer::get_lambda);
|
|
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPHiddenLayer::set_lambda);
|
|
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPHiddenLayer::get_alpha);
|
|
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPHiddenLayer::set_alpha);
|
|
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
|
|
|
|
ClassDB::bind_method(D_METHOD("get_weight_init"), &MLPPHiddenLayer::get_weight_init);
|
|
ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPHiddenLayer::set_weight_init);
|
|
ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init");
|
|
|
|
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPHiddenLayer::is_initialized);
|
|
ClassDB::bind_method(D_METHOD("initialize"), &MLPPHiddenLayer::initialize);
|
|
|
|
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPHiddenLayer::forward_pass);
|
|
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPHiddenLayer::test);
|
|
}
|