/*************************************************************************/ /* hidden_layer.cpp */ /*************************************************************************/ /* This file is part of: */ /* PMLPP Machine Learning Library */ /* https://github.com/Relintai/pmlpp */ /*************************************************************************/ /* Copyright (c) 2023-present Péter Magyar. */ /* Copyright (c) 2022-2023 Marc Melikyan */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "hidden_layer.h" #include "../activation/activation.h" #include #include int MLPPHiddenLayer::get_n_hidden() const { return _n_hidden; } void MLPPHiddenLayer::set_n_hidden(const int val) { _n_hidden = val; _initialized = false; } MLPPActivation::ActivationFunction MLPPHiddenLayer::get_activation() const { return _activation; } void MLPPHiddenLayer::set_activation(const MLPPActivation::ActivationFunction val) { _activation = val; _initialized = false; } Ref MLPPHiddenLayer::get_input() { return _input; } void MLPPHiddenLayer::set_input(const Ref &val) { _input = val; _initialized = false; } Ref MLPPHiddenLayer::get_weights() { return _weights; } void MLPPHiddenLayer::set_weights(const Ref &val) { _weights = val; _initialized = false; } Ref MLPPHiddenLayer::MLPPHiddenLayer::get_bias() { return _bias; } void MLPPHiddenLayer::set_bias(const Ref &val) { _bias = val; _initialized = false; } Ref MLPPHiddenLayer::get_z() { return _z; } void MLPPHiddenLayer::set_z(const Ref &val) { _z = val; _initialized = false; } Ref MLPPHiddenLayer::get_a() { return _a; } void MLPPHiddenLayer::set_a(const Ref &val) { _a = val; _initialized = false; } Ref MLPPHiddenLayer::get_z_test() { return _z_test; } void MLPPHiddenLayer::set_z_test(const Ref &val) { _z_test = val; _initialized = false; } Ref MLPPHiddenLayer::get_a_test() { return _a_test; } void MLPPHiddenLayer::set_a_test(const Ref &val) { _a_test = val; _initialized = false; } Ref MLPPHiddenLayer::get_delta() { return _delta; } void MLPPHiddenLayer::set_delta(const Ref &val) { _delta = val; _initialized = false; } MLPPReg::RegularizationType MLPPHiddenLayer::get_reg() const { return _reg; } void MLPPHiddenLayer::set_reg(const MLPPReg::RegularizationType val) { _reg = val; _initialized = false; } real_t MLPPHiddenLayer::get_lambda() const { return _lambda; } void MLPPHiddenLayer::set_lambda(const real_t val) { _lambda = val; _initialized = false; } real_t MLPPHiddenLayer::get_alpha() const { return _alpha; } void MLPPHiddenLayer::set_alpha(const real_t val) { _alpha = val; _initialized = false; } MLPPUtilities::WeightDistributionType MLPPHiddenLayer::get_weight_init() const { return _weight_init; } void MLPPHiddenLayer::set_weight_init(const MLPPUtilities::WeightDistributionType val) { _weight_init = val; _initialized = false; } bool MLPPHiddenLayer::is_initialized() { return _initialized; } void MLPPHiddenLayer::initialize() { if (_initialized) { return; } _weights->resize(Size2i(_n_hidden, _input->size().x)); _bias->resize(_n_hidden); MLPPUtilities utils; utils.weight_initializationm(_weights, _weight_init); utils.bias_initializationv(_bias); _initialized = true; } void MLPPHiddenLayer::forward_pass() { if (!_initialized) { initialize(); } MLPPActivation avn; _z->multb(_input, _weights); _z->add_vec(_bias); _a = avn.run_activation_norm_matrix(_activation, _z); } void MLPPHiddenLayer::test(const Ref &x) { if (!_initialized) { initialize(); } MLPPActivation avn; _z_test = _weights->transposen()->mult_vec(x); _z_test->add(_bias); _a_test = avn.run_activation_norm_vector(_activation, _z_test); } MLPPHiddenLayer::MLPPHiddenLayer(int p_n_hidden, MLPPActivation::ActivationFunction p_activation, Ref p_input, MLPPUtilities::WeightDistributionType p_weight_init, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { _n_hidden = p_n_hidden; _activation = p_activation; _input = p_input; // Regularization Params _reg = p_reg; _lambda = p_lambda; /* Regularization Parameter */ _alpha = p_alpha; /* This is the controlling param for Elastic Net*/ _weight_init = p_weight_init; _z.instance(); _a.instance(); _z_test.instance(); _a_test.instance(); _delta.instance(); _weights.instance(); _bias.instance(); _initialized = false; initialize(); } MLPPHiddenLayer::MLPPHiddenLayer() { _n_hidden = 0; _activation = MLPPActivation::ACTIVATION_FUNCTION_LINEAR; // Regularization Params //reg = 0; _lambda = 0; /* Regularization Parameter */ _alpha = 0; /* This is the controlling param for Elastic Net*/ _weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT; _z.instance(); _a.instance(); _z_test.instance(); _a_test.instance(); _delta.instance(); _weights.instance(); _bias.instance(); _initialized = false; } MLPPHiddenLayer::~MLPPHiddenLayer() { } void MLPPHiddenLayer::_bind_methods() { ClassDB::bind_method(D_METHOD("get_n_hidden"), &MLPPHiddenLayer::get_n_hidden); ClassDB::bind_method(D_METHOD("set_n_hidden", "val"), &MLPPHiddenLayer::set_n_hidden); ADD_PROPERTY(PropertyInfo(Variant::INT, "n_hidden"), "set_n_hidden", "get_n_hidden"); ClassDB::bind_method(D_METHOD("get_activation"), &MLPPHiddenLayer::get_activation); ClassDB::bind_method(D_METHOD("set_activation", "val"), &MLPPHiddenLayer::set_activation); ADD_PROPERTY(PropertyInfo(Variant::INT, "activation"), "set_activation", "get_activation"); ClassDB::bind_method(D_METHOD("get_input"), &MLPPHiddenLayer::get_input); ClassDB::bind_method(D_METHOD("set_input", "val"), &MLPPHiddenLayer::set_input); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input", "get_input"); ClassDB::bind_method(D_METHOD("get_weights"), &MLPPHiddenLayer::get_weights); ClassDB::bind_method(D_METHOD("set_weights", "val"), &MLPPHiddenLayer::set_weights); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "weights", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_weights", "get_weights"); ClassDB::bind_method(D_METHOD("get_bias"), &MLPPHiddenLayer::get_bias); ClassDB::bind_method(D_METHOD("set_bias", "val"), &MLPPHiddenLayer::set_bias); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "bias", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_bias", "get_bias"); ClassDB::bind_method(D_METHOD("get_z"), &MLPPHiddenLayer::get_z); ClassDB::bind_method(D_METHOD("set_z", "val"), &MLPPHiddenLayer::set_z); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_z", "get_z"); ClassDB::bind_method(D_METHOD("get_a"), &MLPPHiddenLayer::get_a); ClassDB::bind_method(D_METHOD("set_a", "val"), &MLPPHiddenLayer::set_a); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_a", "get_a"); ClassDB::bind_method(D_METHOD("get_z_test"), &MLPPHiddenLayer::get_z_test); ClassDB::bind_method(D_METHOD("set_z_test", "val"), &MLPPHiddenLayer::set_z_test); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "z_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_z_test", "get_z_test"); ClassDB::bind_method(D_METHOD("get_a_test"), &MLPPHiddenLayer::get_a_test); ClassDB::bind_method(D_METHOD("set_a_test", "val"), &MLPPHiddenLayer::set_a_test); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "a_test", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_a_test", "get_a_test"); ClassDB::bind_method(D_METHOD("get_delta"), &MLPPHiddenLayer::get_delta); ClassDB::bind_method(D_METHOD("set_delta", "val"), &MLPPHiddenLayer::set_delta); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "delta", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_delta", "get_delta"); ClassDB::bind_method(D_METHOD("get_reg"), &MLPPHiddenLayer::get_reg); ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPHiddenLayer::set_reg); ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPHiddenLayer::get_lambda); ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPHiddenLayer::set_lambda); ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPHiddenLayer::get_alpha); ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPHiddenLayer::set_alpha); ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); ClassDB::bind_method(D_METHOD("get_weight_init"), &MLPPHiddenLayer::get_weight_init); ClassDB::bind_method(D_METHOD("set_weight_init", "val"), &MLPPHiddenLayer::set_weight_init); ADD_PROPERTY(PropertyInfo(Variant::INT, "set_weight_init"), "set_weight_init", "get_weight_init"); ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPHiddenLayer::is_initialized); ClassDB::bind_method(D_METHOD("initialize"), &MLPPHiddenLayer::initialize); ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPHiddenLayer::forward_pass); ClassDB::bind_method(D_METHOD("test", "x"), &MLPPHiddenLayer::test); }