mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-03 16:39:40 +01:00
190 lines
7.2 KiB
C++
190 lines
7.2 KiB
C++
//
|
|
// MANN.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "mann_old.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
|
|
MLPPMANNOld::MLPPMANNOld(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet) :
|
|
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), n_output(outputSet[0].size()) {
|
|
}
|
|
|
|
MLPPMANNOld::~MLPPMANNOld() {
|
|
delete outputLayer;
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPMANNOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
if (!network.empty()) {
|
|
network[0].input = X;
|
|
network[0].forwardPass();
|
|
|
|
for (uint32_t i = 1; i < network.size(); i++) {
|
|
network[i].input = network[i - 1].a;
|
|
network[i].forwardPass();
|
|
}
|
|
outputLayer->input = network[network.size() - 1].a;
|
|
} else {
|
|
outputLayer->input = X;
|
|
}
|
|
outputLayer->forwardPass();
|
|
return outputLayer->a;
|
|
}
|
|
|
|
std::vector<real_t> MLPPMANNOld::modelTest(std::vector<real_t> x) {
|
|
if (!network.empty()) {
|
|
network[0].Test(x);
|
|
for (uint32_t i = 1; i < network.size(); i++) {
|
|
network[i].Test(network[i - 1].a_test);
|
|
}
|
|
outputLayer->Test(network[network.size() - 1].a_test);
|
|
} else {
|
|
outputLayer->Test(x);
|
|
}
|
|
return outputLayer->a_test;
|
|
}
|
|
|
|
void MLPPMANNOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
|
class MLPPCost cost;
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while (true) {
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
if (outputLayer->activation == "Softmax") {
|
|
outputLayer->delta = alg.subtraction(y_hat, outputSet);
|
|
} else {
|
|
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
|
|
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
|
|
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> outputWGrad = alg.matmult(alg.transpose(outputLayer->input), outputLayer->delta);
|
|
|
|
outputLayer->weights = alg.subtraction(outputLayer->weights, alg.scalarMultiply(learning_rate / n, outputWGrad));
|
|
outputLayer->weights = regularization.regWeights(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
|
|
outputLayer->bias = alg.subtractMatrixRows(outputLayer->bias, alg.scalarMultiply(learning_rate / n, outputLayer->delta));
|
|
|
|
if (!network.empty()) {
|
|
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
|
|
network[network.size() - 1].delta = alg.hadamard_product(alg.matmult(outputLayer->delta, alg.transpose(outputLayer->weights)), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
|
|
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
|
|
|
|
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad));
|
|
network[network.size() - 1].weights = regularization.regWeights(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg);
|
|
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta));
|
|
|
|
for (int i = network.size() - 2; i >= 0; i--) {
|
|
hiddenLayerAvn = network[i].activation_map[network[i].activation];
|
|
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1));
|
|
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
|
|
network[i].weights = alg.subtraction(network[i].weights, alg.scalarMultiply(learning_rate / n, hiddenLayerWGrad));
|
|
network[i].weights = regularization.regWeights(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
|
|
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
|
|
}
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
|
|
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
|
|
if (!network.empty()) {
|
|
std::cout << "Layer " << network.size() << ": " << std::endl;
|
|
for (int i = network.size() - 1; i >= 0; i--) {
|
|
std::cout << "Layer " << i + 1 << ": " << std::endl;
|
|
MLPPUtilities::UI(network[i].weights, network[i].bias);
|
|
}
|
|
}
|
|
}
|
|
|
|
epoch++;
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
real_t MLPPMANNOld::score() {
|
|
MLPPUtilities util;
|
|
forwardPass();
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void MLPPMANNOld::save(std::string fileName) {
|
|
MLPPUtilities util;
|
|
if (!network.empty()) {
|
|
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
|
|
for (uint32_t i = 1; i < network.size(); i++) {
|
|
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
|
|
}
|
|
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
|
|
} else {
|
|
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
|
|
}
|
|
}
|
|
|
|
void MLPPMANNOld::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
|
if (network.empty()) {
|
|
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, inputSet, weightInit, reg, lambda, alpha));
|
|
network[0].forwardPass();
|
|
} else {
|
|
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
|
|
network[network.size() - 1].forwardPass();
|
|
}
|
|
}
|
|
|
|
void MLPPMANNOld::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
|
if (!network.empty()) {
|
|
outputLayer = new MLPPOldMultiOutputLayer(n_output, network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
|
|
} else {
|
|
outputLayer = new MLPPOldMultiOutputLayer(n_output, k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
|
|
}
|
|
}
|
|
|
|
real_t MLPPMANNOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
|
MLPPReg regularization;
|
|
class MLPPCost cost;
|
|
real_t totalRegTerm = 0;
|
|
|
|
auto cost_function = outputLayer->cost_map[outputLayer->cost];
|
|
if (!network.empty()) {
|
|
for (uint32_t i = 0; i < network.size() - 1; i++) {
|
|
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
|
|
}
|
|
}
|
|
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
|
|
}
|
|
|
|
void MLPPMANNOld::forwardPass() {
|
|
if (!network.empty()) {
|
|
network[0].input = inputSet;
|
|
network[0].forwardPass();
|
|
|
|
for (uint32_t i = 1; i < network.size(); i++) {
|
|
network[i].input = network[i - 1].a;
|
|
network[i].forwardPass();
|
|
}
|
|
outputLayer->input = network[network.size() - 1].a;
|
|
} else {
|
|
outputLayer->input = inputSet;
|
|
}
|
|
outputLayer->forwardPass();
|
|
y_hat = outputLayer->a;
|
|
}
|