mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
310 lines
10 KiB
C++
310 lines
10 KiB
C++
//
|
|
// SoftmaxNet.cpp
|
|
//
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
//
|
|
|
|
#include "softmax_net_old.h"
|
|
|
|
#include "../activation/activation.h"
|
|
#include "../cost/cost.h"
|
|
#include "../data/data.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../regularization/reg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
MLPPSoftmaxNetOld::MLPPSoftmaxNetOld(std::vector<std::vector<real_t>> pinputSet, std::vector<std::vector<real_t>> poutputSet, int pn_hidden, std::string preg, real_t plambda, real_t palpha) {
|
|
inputSet = pinputSet;
|
|
outputSet = poutputSet;
|
|
n = pinputSet.size();
|
|
k = pinputSet[0].size();
|
|
n_hidden = pn_hidden;
|
|
n_class = poutputSet[0].size();
|
|
reg = preg;
|
|
lambda = plambda;
|
|
alpha = palpha;
|
|
|
|
y_hat.resize(n);
|
|
|
|
weights1 = MLPPUtilities::weightInitialization(k, n_hidden);
|
|
weights2 = MLPPUtilities::weightInitialization(n_hidden, n_class);
|
|
bias1 = MLPPUtilities::biasInitialization(n_hidden);
|
|
bias2 = MLPPUtilities::biasInitialization(n_class);
|
|
}
|
|
|
|
std::vector<real_t> MLPPSoftmaxNetOld::modelTest(std::vector<real_t> x) {
|
|
return Evaluate(x);
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
return Evaluate(X);
|
|
}
|
|
|
|
void MLPPSoftmaxNetOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
forwardPass();
|
|
|
|
while (true) {
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
// Calculating the errors
|
|
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
// Calculating the weight/bias gradients for layer 2
|
|
|
|
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(a2), error);
|
|
|
|
// weights and bias updation for layer 2
|
|
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
|
|
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
|
|
|
|
bias2 = alg.subtractMatrixRows(bias2, alg.scalarMultiply(learning_rate, error));
|
|
|
|
//Calculating the weight/bias for layer 1
|
|
|
|
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(weights2));
|
|
|
|
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
|
|
|
|
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputSet), D1_2);
|
|
|
|
// weight an bias updation for layer 1
|
|
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
|
|
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
|
|
|
|
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate, D1_2));
|
|
|
|
forwardPass();
|
|
|
|
// UI PORTION
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
std::cout << "Layer 1:" << std::endl;
|
|
MLPPUtilities::UI(weights1, bias1);
|
|
std::cout << "Layer 2:" << std::endl;
|
|
MLPPUtilities::UI(weights2, bias2);
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MLPPSoftmaxNetOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
while (true) {
|
|
std::random_device rd;
|
|
std::default_random_engine generator(rd());
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
int outputIndex = distribution(generator);
|
|
|
|
std::vector<real_t> y_hat = Evaluate(inputSet[outputIndex]);
|
|
|
|
auto prop_res = propagate(inputSet[outputIndex]);
|
|
auto z2 = std::get<0>(prop_res);
|
|
auto a2 = std::get<1>(prop_res);
|
|
|
|
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
|
|
std::vector<real_t> error = alg.subtraction(y_hat, outputSet[outputIndex]);
|
|
|
|
// Weight updation for layer 2
|
|
std::vector<std::vector<real_t>> D2_1 = alg.outerProduct(error, a2);
|
|
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, alg.transpose(D2_1)));
|
|
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
|
|
|
|
// Bias updation for layer 2
|
|
bias2 = alg.subtraction(bias2, alg.scalarMultiply(learning_rate, error));
|
|
|
|
// Weight updation for layer 1
|
|
std::vector<real_t> D1_1 = alg.mat_vec_mult(weights2, error);
|
|
std::vector<real_t> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, true));
|
|
std::vector<std::vector<real_t>> D1_3 = alg.outerProduct(inputSet[outputIndex], D1_2);
|
|
|
|
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
|
|
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
|
|
// Bias updation for layer 1
|
|
|
|
bias1 = alg.subtraction(bias1, alg.scalarMultiply(learning_rate, D1_2));
|
|
|
|
y_hat = Evaluate(inputSet[outputIndex]);
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
|
|
std::cout << "Layer 1:" << std::endl;
|
|
MLPPUtilities::UI(weights1, bias1);
|
|
std::cout << "Layer 2:" << std::endl;
|
|
MLPPUtilities::UI(weights2, bias2);
|
|
}
|
|
epoch++;
|
|
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
void MLPPSoftmaxNetOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
|
MLPPActivation avn;
|
|
MLPPLinAlg alg;
|
|
MLPPReg regularization;
|
|
real_t cost_prev = 0;
|
|
int epoch = 1;
|
|
|
|
// Creating the mini-batches
|
|
int n_mini_batch = n / mini_batch_size;
|
|
|
|
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
auto inputMiniBatches = std::get<0>(batches);
|
|
auto outputMiniBatches = std::get<1>(batches);
|
|
|
|
// Creating the mini-batches
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<std::vector<real_t>> currentInputSet;
|
|
std::vector<std::vector<real_t>> currentOutputSet;
|
|
for (int j = 0; j < n / n_mini_batch; j++) {
|
|
currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]);
|
|
currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]);
|
|
}
|
|
inputMiniBatches.push_back(currentInputSet);
|
|
outputMiniBatches.push_back(currentOutputSet);
|
|
}
|
|
|
|
if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) {
|
|
for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) {
|
|
inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]);
|
|
outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]);
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
for (int i = 0; i < n_mini_batch; i++) {
|
|
std::vector<std::vector<real_t>> y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
auto propagate_res = propagate(inputMiniBatches[i]);
|
|
auto z2 = std::get<0>(propagate_res);
|
|
auto a2 = std::get<1>(propagate_res);
|
|
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the errors
|
|
std::vector<std::vector<real_t>> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
// Calculating the weight/bias gradients for layer 2
|
|
|
|
std::vector<std::vector<real_t>> D2_1 = alg.matmult(alg.transpose(a2), error);
|
|
|
|
// weights and bias updation for layser 2
|
|
weights2 = alg.subtraction(weights2, alg.scalarMultiply(learning_rate, D2_1));
|
|
weights2 = regularization.regWeights(weights2, lambda, alpha, reg);
|
|
|
|
// Bias Updation for layer 2
|
|
bias2 = alg.subtractMatrixRows(bias2, alg.scalarMultiply(learning_rate, error));
|
|
|
|
//Calculating the weight/bias for layer 1
|
|
|
|
std::vector<std::vector<real_t>> D1_1 = alg.matmult(error, alg.transpose(weights2));
|
|
|
|
std::vector<std::vector<real_t>> D1_2 = alg.hadamard_product(D1_1, avn.sigmoid(z2, 1));
|
|
|
|
std::vector<std::vector<real_t>> D1_3 = alg.matmult(alg.transpose(inputMiniBatches[i]), D1_2);
|
|
|
|
// weight an bias updation for layer 1
|
|
weights1 = alg.subtraction(weights1, alg.scalarMultiply(learning_rate, D1_3));
|
|
weights1 = regularization.regWeights(weights1, lambda, alpha, reg);
|
|
|
|
bias1 = alg.subtractMatrixRows(bias1, alg.scalarMultiply(learning_rate, D1_2));
|
|
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
if (UI) {
|
|
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
std::cout << "Layer 1:" << std::endl;
|
|
MLPPUtilities::UI(weights1, bias1);
|
|
std::cout << "Layer 2:" << std::endl;
|
|
MLPPUtilities::UI(weights2, bias2);
|
|
}
|
|
}
|
|
epoch++;
|
|
if (epoch > max_epoch) {
|
|
break;
|
|
}
|
|
}
|
|
forwardPass();
|
|
}
|
|
|
|
real_t MLPPSoftmaxNetOld::score() {
|
|
MLPPUtilities util;
|
|
return util.performance(y_hat, outputSet);
|
|
}
|
|
|
|
void MLPPSoftmaxNetOld::save(std::string fileName) {
|
|
MLPPUtilities util;
|
|
util.saveParameters(fileName, weights1, bias1, 0, 1);
|
|
util.saveParameters(fileName, weights2, bias2, 1, 2);
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::getEmbeddings() {
|
|
return weights1;
|
|
}
|
|
|
|
real_t MLPPSoftmaxNetOld::Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y) {
|
|
MLPPReg regularization;
|
|
MLPPData data;
|
|
class MLPPCost cost;
|
|
return cost.CrossEntropy(y_hat, y) + regularization.regTerm(weights1, lambda, alpha, reg) + regularization.regTerm(weights2, lambda, alpha, reg);
|
|
}
|
|
|
|
std::vector<std::vector<real_t>> MLPPSoftmaxNetOld::Evaluate(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
|
|
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
|
|
return avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, weights2), bias2));
|
|
}
|
|
|
|
std::tuple<std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>> MLPPSoftmaxNetOld::propagate(std::vector<std::vector<real_t>> X) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
std::vector<std::vector<real_t>> z2 = alg.mat_vec_add(alg.matmult(X, weights1), bias1);
|
|
std::vector<std::vector<real_t>> a2 = avn.sigmoid(z2);
|
|
return { z2, a2 };
|
|
}
|
|
|
|
std::vector<real_t> MLPPSoftmaxNetOld::Evaluate(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
|
|
std::vector<real_t> a2 = avn.sigmoid(z2);
|
|
return avn.adjSoftmax(alg.addition(alg.mat_vec_mult(alg.transpose(weights2), a2), bias2));
|
|
}
|
|
|
|
std::tuple<std::vector<real_t>, std::vector<real_t>> MLPPSoftmaxNetOld::propagate(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
std::vector<real_t> z2 = alg.addition(alg.mat_vec_mult(alg.transpose(weights1), x), bias1);
|
|
std::vector<real_t> a2 = avn.sigmoid(z2);
|
|
return { z2, a2 };
|
|
}
|
|
|
|
void MLPPSoftmaxNetOld::forwardPass() {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z2 = alg.mat_vec_add(alg.matmult(inputSet, weights1), bias1);
|
|
a2 = avn.sigmoid(z2);
|
|
y_hat = avn.adjSoftmax(alg.mat_vec_add(alg.matmult(a2, weights2), bias2));
|
|
}
|