mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-25 15:59:19 +01:00
51 lines
1.5 KiB
C++
51 lines
1.5 KiB
C++
|
|
#ifndef MLPP_MANN_H
|
|
#define MLPP_MANN_H
|
|
|
|
//
|
|
// MANN.hpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "core/math/math_defs.h"
|
|
|
|
#include "../hidden_layer/hidden_layer.h"
|
|
#include "../multi_output_layer/multi_output_layer.h"
|
|
|
|
#include "../hidden_layer/hidden_layer_old.h"
|
|
#include "../multi_output_layer/multi_output_layer_old.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class MLPPMANN {
|
|
public:
|
|
MLPPMANN(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet);
|
|
~MLPPMANN();
|
|
std::vector<std::vector<real_t>> modelSetTest(std::vector<std::vector<real_t>> X);
|
|
std::vector<real_t> modelTest(std::vector<real_t> x);
|
|
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
|
real_t score();
|
|
void save(std::string fileName);
|
|
|
|
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
|
|
|
|
private:
|
|
real_t Cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
|
|
void forwardPass();
|
|
|
|
std::vector<std::vector<real_t>> inputSet;
|
|
std::vector<std::vector<real_t>> outputSet;
|
|
std::vector<std::vector<real_t>> y_hat;
|
|
|
|
std::vector<MLPPOldHiddenLayer> network;
|
|
MLPPOldMultiOutputLayer *outputLayer;
|
|
|
|
int n;
|
|
int k;
|
|
int n_output;
|
|
};
|
|
|
|
#endif /* MANN_hpp */ |