mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-08 13:12:09 +01:00
Also split layers and old layers into different files.
This commit is contained in:
parent
b7e9de484c
commit
0025a8ae3d
3
SCsub
3
SCsub
@ -51,6 +51,9 @@ sources = [
|
||||
"mlpp/wgan/wgan.cpp",
|
||||
|
||||
"mlpp/wgan/wgan_old.cpp",
|
||||
"mlpp/output_layer/output_layer_old.cpp",
|
||||
"mlpp/multi_output_layer/multi_output_layer_old.cpp",
|
||||
"mlpp/hidden_layer/hidden_layer_old.cpp",
|
||||
|
||||
"test/mlpp_tests.cpp",
|
||||
]
|
||||
|
@ -12,6 +12,9 @@
|
||||
#include "../hidden_layer/hidden_layer.h"
|
||||
#include "../output_layer/output_layer.h"
|
||||
|
||||
#include "../hidden_layer/hidden_layer_old.h"
|
||||
#include "../output_layer/output_layer_old.h"
|
||||
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
@ -13,6 +13,9 @@
|
||||
#include "../hidden_layer/hidden_layer.h"
|
||||
#include "../output_layer/output_layer.h"
|
||||
|
||||
#include "../hidden_layer/hidden_layer_old.h"
|
||||
#include "../output_layer/output_layer_old.h"
|
||||
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
@ -291,109 +291,3 @@ void MLPPHiddenLayer::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPHiddenLayer::forward_pass);
|
||||
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPHiddenLayer::test);
|
||||
}
|
||||
|
||||
MLPPOldHiddenLayer::MLPPOldHiddenLayer(int p_n_hidden, std::string p_activation, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization(n_hidden);
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
}
|
||||
|
||||
void MLPPOldHiddenLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldHiddenLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
||||
|
@ -110,38 +110,4 @@ protected:
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
class MLPPOldHiddenLayer {
|
||||
public:
|
||||
MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<std::vector<real_t>> weights;
|
||||
std::vector<real_t> bias;
|
||||
|
||||
std::vector<std::vector<real_t>> z;
|
||||
std::vector<std::vector<real_t>> a;
|
||||
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivation::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activationTest_map;
|
||||
|
||||
std::vector<real_t> z_test;
|
||||
std::vector<real_t> a_test;
|
||||
|
||||
std::vector<std::vector<real_t>> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* HiddenLayer_hpp */
|
118
mlpp/hidden_layer/hidden_layer_old.cpp
Normal file
118
mlpp/hidden_layer/hidden_layer_old.cpp
Normal file
@ -0,0 +1,118 @@
|
||||
//
|
||||
// HiddenLayer.cpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "hidden_layer_old.h"
|
||||
#include "../activation/activation.h"
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPOldHiddenLayer::MLPPOldHiddenLayer(int p_n_hidden, std::string p_activation, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization(n_hidden);
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
}
|
||||
|
||||
void MLPPOldHiddenLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldHiddenLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
61
mlpp/hidden_layer/hidden_layer_old.h
Normal file
61
mlpp/hidden_layer/hidden_layer_old.h
Normal file
@ -0,0 +1,61 @@
|
||||
|
||||
#ifndef MLPP_HIDDEN_LAYER_OLD_H
|
||||
#define MLPP_HIDDEN_LAYER_OLD_H
|
||||
|
||||
//
|
||||
// HiddenLayer.hpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/string/ustring.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../activation/activation.h"
|
||||
#include "../regularization/reg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPOldHiddenLayer {
|
||||
public:
|
||||
MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<std::vector<real_t>> weights;
|
||||
std::vector<real_t> bias;
|
||||
|
||||
std::vector<std::vector<real_t>> z;
|
||||
std::vector<std::vector<real_t>> a;
|
||||
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivation::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activationTest_map;
|
||||
|
||||
std::vector<real_t> z_test;
|
||||
std::vector<real_t> a_test;
|
||||
|
||||
std::vector<std::vector<real_t>> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* HiddenLayer_hpp */
|
@ -13,11 +13,12 @@
|
||||
#include "../hidden_layer/hidden_layer.h"
|
||||
#include "../multi_output_layer/multi_output_layer.h"
|
||||
|
||||
#include "../hidden_layer/hidden_layer_old.h"
|
||||
#include "../multi_output_layer/multi_output_layer_old.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
||||
|
||||
class MLPPMANN {
|
||||
public:
|
||||
MLPPMANN(std::vector<std::vector<real_t>> inputSet, std::vector<std::vector<real_t>> outputSet);
|
||||
@ -47,5 +48,4 @@ private:
|
||||
int n_output;
|
||||
};
|
||||
|
||||
|
||||
#endif /* MANN_hpp */
|
@ -8,9 +8,6 @@
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
int MLPPMultiOutputLayer::get_n_output() {
|
||||
return n_output;
|
||||
}
|
||||
@ -265,130 +262,3 @@ void MLPPMultiOutputLayer::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPMultiOutputLayer::forward_pass);
|
||||
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPMultiOutputLayer::test);
|
||||
}
|
||||
|
||||
MLPPOldMultiOutputLayer::MLPPOldMultiOutputLayer(int p_n_output, int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_output = p_n_output;
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
cost = p_cost;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(n_hidden, n_output, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization(n_output);
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Softmax"] = &MLPPActivation::softmax;
|
||||
activationTest_map["Softmax"] = &MLPPActivation::softmax;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
|
||||
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
|
||||
cost_map["MSE"] = &MLPPCost::MSE;
|
||||
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
|
||||
cost_map["RMSE"] = &MLPPCost::RMSE;
|
||||
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
|
||||
cost_map["MAE"] = &MLPPCost::MAE;
|
||||
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
|
||||
cost_map["MBE"] = &MLPPCost::MBE;
|
||||
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
|
||||
cost_map["LogLoss"] = &MLPPCost::LogLoss;
|
||||
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
|
||||
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
|
||||
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
|
||||
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
|
||||
}
|
||||
|
||||
void MLPPOldMultiOutputLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldMultiOutputLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
||||
|
@ -21,10 +21,6 @@
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPMultiOutputLayer : public Reference {
|
||||
GDCLASS(MLPPMultiOutputLayer, Reference);
|
||||
|
||||
@ -114,42 +110,4 @@ protected:
|
||||
MLPPUtilities::WeightDistributionType weight_init;
|
||||
};
|
||||
|
||||
class MLPPOldMultiOutputLayer {
|
||||
public:
|
||||
MLPPOldMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_output;
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
std::string cost;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<std::vector<real_t>> weights;
|
||||
std::vector<real_t> bias;
|
||||
|
||||
std::vector<std::vector<real_t>> z;
|
||||
std::vector<std::vector<real_t>> a;
|
||||
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivation::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activationTest_map;
|
||||
std::map<std::string, real_t (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> cost_map;
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> costDeriv_map;
|
||||
|
||||
std::vector<real_t> z_test;
|
||||
std::vector<real_t> a_test;
|
||||
|
||||
std::vector<std::vector<real_t>> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* MultiOutputLayer_hpp */
|
||||
|
139
mlpp/multi_output_layer/multi_output_layer_old.cpp
Normal file
139
mlpp/multi_output_layer/multi_output_layer_old.cpp
Normal file
@ -0,0 +1,139 @@
|
||||
//
|
||||
// MultiOutputLayer.cpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "multi_output_layer_old.h"
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPOldMultiOutputLayer::MLPPOldMultiOutputLayer(int p_n_output, int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_output = p_n_output;
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
cost = p_cost;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(n_hidden, n_output, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization(n_output);
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Softmax"] = &MLPPActivation::softmax;
|
||||
activationTest_map["Softmax"] = &MLPPActivation::softmax;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
|
||||
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
|
||||
cost_map["MSE"] = &MLPPCost::MSE;
|
||||
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
|
||||
cost_map["RMSE"] = &MLPPCost::RMSE;
|
||||
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
|
||||
cost_map["MAE"] = &MLPPCost::MAE;
|
||||
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
|
||||
cost_map["MBE"] = &MLPPCost::MBE;
|
||||
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
|
||||
cost_map["LogLoss"] = &MLPPCost::LogLoss;
|
||||
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
|
||||
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
|
||||
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
|
||||
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
|
||||
}
|
||||
|
||||
void MLPPOldMultiOutputLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldMultiOutputLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
66
mlpp/multi_output_layer/multi_output_layer_old.h
Normal file
66
mlpp/multi_output_layer/multi_output_layer_old.h
Normal file
@ -0,0 +1,66 @@
|
||||
|
||||
#ifndef MLPP_MULTI_OUTPUT_LAYER_OLD_H
|
||||
#define MLPP_MULTI_OUTPUT_LAYER_OLD_H
|
||||
|
||||
//
|
||||
// MultiOutputLayer.hpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/string/ustring.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../activation/activation.h"
|
||||
#include "../cost/cost.h"
|
||||
#include "../regularization/reg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPOldMultiOutputLayer {
|
||||
public:
|
||||
MLPPOldMultiOutputLayer(int n_output, int n_hidden, std::string activation, std::string cost, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_output;
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
std::string cost;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<std::vector<real_t>> weights;
|
||||
std::vector<real_t> bias;
|
||||
|
||||
std::vector<std::vector<real_t>> z;
|
||||
std::vector<std::vector<real_t>> a;
|
||||
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPActivation::*)(std::vector<std::vector<real_t>>, bool)> activation_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activationTest_map;
|
||||
std::map<std::string, real_t (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> cost_map;
|
||||
std::map<std::string, std::vector<std::vector<real_t>> (MLPPCost::*)(std::vector<std::vector<real_t>>, std::vector<std::vector<real_t>>)> costDeriv_map;
|
||||
|
||||
std::vector<real_t> z_test;
|
||||
std::vector<real_t> a_test;
|
||||
|
||||
std::vector<std::vector<real_t>> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* MultiOutputLayer_hpp */
|
@ -8,9 +8,6 @@
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
int MLPPOutputLayer::get_n_hidden() {
|
||||
return n_hidden;
|
||||
}
|
||||
@ -300,126 +297,3 @@ void MLPPOutputLayer::_bind_methods() {
|
||||
ClassDB::bind_method(D_METHOD("forward_pass"), &MLPPOutputLayer::forward_pass);
|
||||
ClassDB::bind_method(D_METHOD("test", "x"), &MLPPOutputLayer::test);
|
||||
}
|
||||
|
||||
MLPPOldOutputLayer::MLPPOldOutputLayer(int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
cost = p_cost;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(n_hidden, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
|
||||
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
|
||||
cost_map["MSE"] = &MLPPCost::MSE;
|
||||
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
|
||||
cost_map["RMSE"] = &MLPPCost::RMSE;
|
||||
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
|
||||
cost_map["MAE"] = &MLPPCost::MAE;
|
||||
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
|
||||
cost_map["MBE"] = &MLPPCost::MBE;
|
||||
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
|
||||
cost_map["LogLoss"] = &MLPPCost::LogLoss;
|
||||
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
|
||||
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
|
||||
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
|
||||
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
|
||||
}
|
||||
|
||||
void MLPPOldOutputLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights));
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldOutputLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.dot(weights, x) + bias;
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
||||
|
@ -20,11 +20,6 @@
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPOutputLayer : public Reference {
|
||||
GDCLASS(MLPPOutputLayer, Reference);
|
||||
|
||||
@ -115,41 +110,4 @@ protected:
|
||||
bool _initialized;
|
||||
};
|
||||
|
||||
class MLPPOldOutputLayer {
|
||||
public:
|
||||
MLPPOldOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
std::string cost;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<real_t> weights;
|
||||
real_t bias;
|
||||
|
||||
std::vector<real_t> z;
|
||||
std::vector<real_t> a;
|
||||
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activation_map;
|
||||
std::map<std::string, real_t (MLPPActivation::*)(real_t, bool)> activationTest_map;
|
||||
std::map<std::string, real_t (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> cost_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> costDeriv_map;
|
||||
|
||||
real_t z_test;
|
||||
real_t a_test;
|
||||
|
||||
std::vector<real_t> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* OutputLayer_hpp */
|
||||
|
135
mlpp/output_layer/output_layer_old.cpp
Normal file
135
mlpp/output_layer/output_layer_old.cpp
Normal file
@ -0,0 +1,135 @@
|
||||
//
|
||||
// OutputLayer.cpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "output_layer_old.h"
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPOldOutputLayer::MLPPOldOutputLayer(int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
||||
n_hidden = p_n_hidden;
|
||||
activation = p_activation;
|
||||
cost = p_cost;
|
||||
input = p_input;
|
||||
weightInit = p_weightInit;
|
||||
reg = p_reg;
|
||||
lambda = p_lambda;
|
||||
alpha = p_alpha;
|
||||
|
||||
weights = MLPPUtilities::weightInitialization(n_hidden, weightInit);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
|
||||
activation_map["Linear"] = &MLPPActivation::linear;
|
||||
activationTest_map["Linear"] = &MLPPActivation::linear;
|
||||
|
||||
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
||||
|
||||
activation_map["Swish"] = &MLPPActivation::swish;
|
||||
activationTest_map["Swish"] = &MLPPActivation::swish;
|
||||
|
||||
activation_map["Mish"] = &MLPPActivation::mish;
|
||||
activationTest_map["Mish"] = &MLPPActivation::mish;
|
||||
|
||||
activation_map["SinC"] = &MLPPActivation::sinc;
|
||||
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
||||
|
||||
activation_map["Softplus"] = &MLPPActivation::softplus;
|
||||
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
||||
|
||||
activation_map["Softsign"] = &MLPPActivation::softsign;
|
||||
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
||||
|
||||
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
||||
|
||||
activation_map["Logit"] = &MLPPActivation::logit;
|
||||
activationTest_map["Logit"] = &MLPPActivation::logit;
|
||||
|
||||
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
||||
|
||||
activation_map["RELU"] = &MLPPActivation::RELU;
|
||||
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
||||
|
||||
activation_map["GELU"] = &MLPPActivation::GELU;
|
||||
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
||||
|
||||
activation_map["Sign"] = &MLPPActivation::sign;
|
||||
activationTest_map["Sign"] = &MLPPActivation::sign;
|
||||
|
||||
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
||||
|
||||
activation_map["Sinh"] = &MLPPActivation::sinh;
|
||||
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
||||
|
||||
activation_map["Cosh"] = &MLPPActivation::cosh;
|
||||
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
||||
|
||||
activation_map["Tanh"] = &MLPPActivation::tanh;
|
||||
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
||||
|
||||
activation_map["Csch"] = &MLPPActivation::csch;
|
||||
activationTest_map["Csch"] = &MLPPActivation::csch;
|
||||
|
||||
activation_map["Sech"] = &MLPPActivation::sech;
|
||||
activationTest_map["Sech"] = &MLPPActivation::sech;
|
||||
|
||||
activation_map["Coth"] = &MLPPActivation::coth;
|
||||
activationTest_map["Coth"] = &MLPPActivation::coth;
|
||||
|
||||
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
||||
|
||||
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
||||
|
||||
activation_map["Artanh"] = &MLPPActivation::artanh;
|
||||
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
||||
|
||||
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
||||
|
||||
activation_map["Arsech"] = &MLPPActivation::arsech;
|
||||
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
||||
|
||||
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
||||
|
||||
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
|
||||
cost_map["MSE"] = &MLPPCost::MSE;
|
||||
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
|
||||
cost_map["RMSE"] = &MLPPCost::RMSE;
|
||||
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
|
||||
cost_map["MAE"] = &MLPPCost::MAE;
|
||||
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
|
||||
cost_map["MBE"] = &MLPPCost::MBE;
|
||||
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
|
||||
cost_map["LogLoss"] = &MLPPCost::LogLoss;
|
||||
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
|
||||
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
|
||||
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
|
||||
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
|
||||
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
|
||||
}
|
||||
|
||||
void MLPPOldOutputLayer::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights));
|
||||
a = (avn.*activation_map[activation])(z, false);
|
||||
}
|
||||
|
||||
void MLPPOldOutputLayer::Test(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
z_test = alg.dot(weights, x) + bias;
|
||||
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
||||
}
|
65
mlpp/output_layer/output_layer_old.h
Normal file
65
mlpp/output_layer/output_layer_old.h
Normal file
@ -0,0 +1,65 @@
|
||||
|
||||
#ifndef MLPP_OUTPUT_LAYER_OLD_H
|
||||
#define MLPP_OUTPUT_LAYER_OLD_H
|
||||
|
||||
//
|
||||
// OutputLayer.hpp
|
||||
//
|
||||
// Created by Marc Melikyan on 11/4/20.
|
||||
//
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
#include "core/string/ustring.h"
|
||||
|
||||
#include "core/object/reference.h"
|
||||
|
||||
#include "../activation/activation.h"
|
||||
#include "../cost/cost.h"
|
||||
#include "../regularization/reg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPOldOutputLayer {
|
||||
public:
|
||||
MLPPOldOutputLayer(int n_hidden, std::string activation, std::string cost, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha);
|
||||
|
||||
int n_hidden;
|
||||
std::string activation;
|
||||
std::string cost;
|
||||
|
||||
std::vector<std::vector<real_t>> input;
|
||||
|
||||
std::vector<real_t> weights;
|
||||
real_t bias;
|
||||
|
||||
std::vector<real_t> z;
|
||||
std::vector<real_t> a;
|
||||
|
||||
std::map<std::string, std::vector<real_t> (MLPPActivation::*)(std::vector<real_t>, bool)> activation_map;
|
||||
std::map<std::string, real_t (MLPPActivation::*)(real_t, bool)> activationTest_map;
|
||||
std::map<std::string, real_t (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> cost_map;
|
||||
std::map<std::string, std::vector<real_t> (MLPPCost::*)(std::vector<real_t>, std::vector<real_t>)> costDeriv_map;
|
||||
|
||||
real_t z_test;
|
||||
real_t a_test;
|
||||
|
||||
std::vector<real_t> delta;
|
||||
|
||||
// Regularization Params
|
||||
std::string reg;
|
||||
real_t lambda; /* Regularization Parameter */
|
||||
real_t alpha; /* This is the controlling param for Elastic Net*/
|
||||
|
||||
std::string weightInit;
|
||||
|
||||
void forwardPass();
|
||||
void Test(std::vector<real_t> x);
|
||||
};
|
||||
|
||||
#endif /* OutputLayer_hpp */
|
@ -17,8 +17,8 @@
|
||||
#include "../lin_alg/mlpp_matrix.h"
|
||||
#include "../lin_alg/mlpp_vector.h"
|
||||
|
||||
#include "../hidden_layer/hidden_layer.h"
|
||||
#include "../output_layer/output_layer.h"
|
||||
#include "../hidden_layer/hidden_layer_old.h"
|
||||
#include "../output_layer/output_layer_old.h"
|
||||
|
||||
#include "../activation/activation.h"
|
||||
#include "../cost/cost.h"
|
||||
|
Loading…
Reference in New Issue
Block a user