mirror of
https://github.com/Relintai/pmlpp.git
synced 2024-11-14 14:07:18 +01:00
140 lines
4.8 KiB
C++
140 lines
4.8 KiB
C++
//
|
|
// MultiOutputLayer.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "multi_output_layer_old.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
MLPPOldMultiOutputLayer::MLPPOldMultiOutputLayer(int p_n_output, int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
|
|
n_output = p_n_output;
|
|
n_hidden = p_n_hidden;
|
|
activation = p_activation;
|
|
cost = p_cost;
|
|
input = p_input;
|
|
weightInit = p_weightInit;
|
|
reg = p_reg;
|
|
lambda = p_lambda;
|
|
alpha = p_alpha;
|
|
|
|
weights = MLPPUtilities::weightInitialization(n_hidden, n_output, weightInit);
|
|
bias = MLPPUtilities::biasInitialization(n_output);
|
|
|
|
activation_map["Linear"] = &MLPPActivation::linear;
|
|
activationTest_map["Linear"] = &MLPPActivation::linear;
|
|
|
|
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
|
|
activation_map["Softmax"] = &MLPPActivation::softmax;
|
|
activationTest_map["Softmax"] = &MLPPActivation::softmax;
|
|
|
|
activation_map["Swish"] = &MLPPActivation::swish;
|
|
activationTest_map["Swish"] = &MLPPActivation::swish;
|
|
|
|
activation_map["Mish"] = &MLPPActivation::mish;
|
|
activationTest_map["Mish"] = &MLPPActivation::mish;
|
|
|
|
activation_map["SinC"] = &MLPPActivation::sinc;
|
|
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
|
|
|
activation_map["Softplus"] = &MLPPActivation::softplus;
|
|
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
|
|
|
activation_map["Softsign"] = &MLPPActivation::softsign;
|
|
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
|
|
|
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
|
|
activation_map["Logit"] = &MLPPActivation::logit;
|
|
activationTest_map["Logit"] = &MLPPActivation::logit;
|
|
|
|
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
|
|
activation_map["RELU"] = &MLPPActivation::RELU;
|
|
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
|
|
|
activation_map["GELU"] = &MLPPActivation::GELU;
|
|
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
|
|
|
activation_map["Sign"] = &MLPPActivation::sign;
|
|
activationTest_map["Sign"] = &MLPPActivation::sign;
|
|
|
|
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
|
|
activation_map["Sinh"] = &MLPPActivation::sinh;
|
|
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
|
|
|
activation_map["Cosh"] = &MLPPActivation::cosh;
|
|
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
|
|
|
activation_map["Tanh"] = &MLPPActivation::tanh;
|
|
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
|
|
|
activation_map["Csch"] = &MLPPActivation::csch;
|
|
activationTest_map["Csch"] = &MLPPActivation::csch;
|
|
|
|
activation_map["Sech"] = &MLPPActivation::sech;
|
|
activationTest_map["Sech"] = &MLPPActivation::sech;
|
|
|
|
activation_map["Coth"] = &MLPPActivation::coth;
|
|
activationTest_map["Coth"] = &MLPPActivation::coth;
|
|
|
|
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
|
|
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
|
|
activation_map["Artanh"] = &MLPPActivation::artanh;
|
|
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
|
|
|
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
|
|
activation_map["Arsech"] = &MLPPActivation::arsech;
|
|
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
|
|
|
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
|
|
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
|
|
cost_map["MSE"] = &MLPPCost::MSE;
|
|
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
|
|
cost_map["RMSE"] = &MLPPCost::RMSE;
|
|
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
|
|
cost_map["MAE"] = &MLPPCost::MAE;
|
|
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
|
|
cost_map["MBE"] = &MLPPCost::MBE;
|
|
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
|
|
cost_map["LogLoss"] = &MLPPCost::LogLoss;
|
|
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
|
|
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
|
|
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
|
|
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
|
|
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
|
|
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
|
|
}
|
|
|
|
void MLPPOldMultiOutputLayer::forwardPass() {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
|
a = (avn.*activation_map[activation])(z, false);
|
|
}
|
|
|
|
void MLPPOldMultiOutputLayer::Test(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
|
a_test = (avn.*activationTest_map[activation])(z_test, false);
|
|
}
|