pmlpp/mlpp/mann/mann.h

81 lines
2.0 KiB
C++

#ifndef MLPP_MANN_H
#define MLPP_MANN_H
//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "core/math/math_defs.h"
#include "core/object/reference.h"
#include "../regularization/reg.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
#include "../hidden_layer/hidden_layer_old.h"
#include "../multi_output_layer/multi_output_layer_old.h"
#include <string>
#include <vector>
class MLPPMANN : public Reference {
GDCLASS(MLPPMANN, Reference);
public:
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set();
void set_output_set(const Ref<MLPPMatrix> &val);
*/
std::vector<std::vector<real_t>> model_set_test(std::vector<std::vector<real_t>> X);
std::vector<real_t> model_test(std::vector<real_t> x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
real_t score();
void save(std::string file_name);
void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(std::string activation, std::string loss, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
bool is_initialized();
void initialize();
MLPPMANN(std::vector<std::vector<real_t>> p_input_set, std::vector<std::vector<real_t>> p_output_set);
MLPPMANN();
~MLPPMANN();
private:
real_t cost(std::vector<std::vector<real_t>> y_hat, std::vector<std::vector<real_t>> y);
void forward_pass();
static void _bind_methods();
std::vector<std::vector<real_t>> _input_set;
std::vector<std::vector<real_t>> _output_set;
std::vector<std::vector<real_t>> _y_hat;
std::vector<MLPPOldHiddenLayer> _network;
MLPPOldMultiOutputLayer *_output_layer;
int _n;
int _k;
int _n_output;
bool _initialized;
};
#endif /* MANN_hpp */