#ifndef MLPP_MANN_H #define MLPP_MANN_H // // MANN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "core/math/math_defs.h" #include "core/object/reference.h" #include "../regularization/reg.h" #include "../lin_alg/mlpp_matrix.h" #include "../lin_alg/mlpp_vector.h" #include "../hidden_layer/hidden_layer.h" #include "../multi_output_layer/multi_output_layer.h" #include "../hidden_layer/hidden_layer_old.h" #include "../multi_output_layer/multi_output_layer_old.h" #include #include class MLPPMANN : public Reference { GDCLASS(MLPPMANN, Reference); public: /* Ref get_input_set(); void set_input_set(const Ref &val); Ref get_output_set(); void set_output_set(const Ref &val); */ std::vector> model_set_test(std::vector> X); std::vector model_test(std::vector x); void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false); real_t score(); void save(std::string file_name); void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); void add_output_layer(std::string activation, std::string loss, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); bool is_initialized(); void initialize(); MLPPMANN(std::vector> p_input_set, std::vector> p_output_set); MLPPMANN(); ~MLPPMANN(); private: real_t cost(std::vector> y_hat, std::vector> y); void forward_pass(); static void _bind_methods(); std::vector> _input_set; std::vector> _output_set; std::vector> _y_hat; std::vector _network; MLPPOldMultiOutputLayer *_output_layer; int _n; int _k; int _n_output; bool _initialized; }; #endif /* MANN_hpp */