mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-10 17:49:36 +01:00
214 lines
7.5 KiB
C++
214 lines
7.5 KiB
C++
//
|
|
// HiddenLayer.cpp
|
|
//
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
//
|
|
|
|
#include "hidden_layer.h"
|
|
#include "../activation/activation.h"
|
|
#include "../lin_alg/lin_alg.h"
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include <iostream>
|
|
#include <random>
|
|
|
|
/*
|
|
|
|
void MLPPHiddenLayer::forward_pass() {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
|
a = (avn.*activation_map[activation])(z, false);
|
|
}
|
|
|
|
void MLPPHiddenLayer::test(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
|
a_test = (avn.*activationTest_map[activation])(z_test, 0);
|
|
}
|
|
|
|
MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) :
|
|
n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
|
|
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
|
bias = MLPPUtilities::biasInitialization(n_hidden);
|
|
|
|
activation_map["Linear"] = &MLPPActivation::linear;
|
|
activationTest_map["Linear"] = &MLPPActivation::linear;
|
|
|
|
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
|
|
activation_map["Swish"] = &MLPPActivation::swish;
|
|
activationTest_map["Swish"] = &MLPPActivation::swish;
|
|
|
|
activation_map["Mish"] = &MLPPActivation::mish;
|
|
activationTest_map["Mish"] = &MLPPActivation::mish;
|
|
|
|
activation_map["SinC"] = &MLPPActivation::sinc;
|
|
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
|
|
|
activation_map["Softplus"] = &MLPPActivation::softplus;
|
|
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
|
|
|
activation_map["Softsign"] = &MLPPActivation::softsign;
|
|
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
|
|
|
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
|
|
activation_map["Logit"] = &MLPPActivation::logit;
|
|
activationTest_map["Logit"] = &MLPPActivation::logit;
|
|
|
|
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
|
|
activation_map["RELU"] = &MLPPActivation::RELU;
|
|
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
|
|
|
activation_map["GELU"] = &MLPPActivation::GELU;
|
|
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
|
|
|
activation_map["Sign"] = &MLPPActivation::sign;
|
|
activationTest_map["Sign"] = &MLPPActivation::sign;
|
|
|
|
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
|
|
activation_map["Sinh"] = &MLPPActivation::sinh;
|
|
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
|
|
|
activation_map["Cosh"] = &MLPPActivation::cosh;
|
|
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
|
|
|
activation_map["Tanh"] = &MLPPActivation::tanh;
|
|
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
|
|
|
activation_map["Csch"] = &MLPPActivation::csch;
|
|
activationTest_map["Csch"] = &MLPPActivation::csch;
|
|
|
|
activation_map["Sech"] = &MLPPActivation::sech;
|
|
activationTest_map["Sech"] = &MLPPActivation::sech;
|
|
|
|
activation_map["Coth"] = &MLPPActivation::coth;
|
|
activationTest_map["Coth"] = &MLPPActivation::coth;
|
|
|
|
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
|
|
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
|
|
activation_map["Artanh"] = &MLPPActivation::artanh;
|
|
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
|
|
|
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
|
|
activation_map["Arsech"] = &MLPPActivation::arsech;
|
|
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
|
|
|
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
}
|
|
|
|
*/
|
|
|
|
MLPPOldHiddenLayer::MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector<std::vector<real_t>> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) :
|
|
n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
|
|
weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit);
|
|
bias = MLPPUtilities::biasInitialization(n_hidden);
|
|
|
|
activation_map["Linear"] = &MLPPActivation::linear;
|
|
activationTest_map["Linear"] = &MLPPActivation::linear;
|
|
|
|
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
|
|
|
|
activation_map["Swish"] = &MLPPActivation::swish;
|
|
activationTest_map["Swish"] = &MLPPActivation::swish;
|
|
|
|
activation_map["Mish"] = &MLPPActivation::mish;
|
|
activationTest_map["Mish"] = &MLPPActivation::mish;
|
|
|
|
activation_map["SinC"] = &MLPPActivation::sinc;
|
|
activationTest_map["SinC"] = &MLPPActivation::sinc;
|
|
|
|
activation_map["Softplus"] = &MLPPActivation::softplus;
|
|
activationTest_map["Softplus"] = &MLPPActivation::softplus;
|
|
|
|
activation_map["Softsign"] = &MLPPActivation::softsign;
|
|
activationTest_map["Softsign"] = &MLPPActivation::softsign;
|
|
|
|
activation_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
|
|
|
|
activation_map["Logit"] = &MLPPActivation::logit;
|
|
activationTest_map["Logit"] = &MLPPActivation::logit;
|
|
|
|
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
|
|
|
|
activation_map["RELU"] = &MLPPActivation::RELU;
|
|
activationTest_map["RELU"] = &MLPPActivation::RELU;
|
|
|
|
activation_map["GELU"] = &MLPPActivation::GELU;
|
|
activationTest_map["GELU"] = &MLPPActivation::GELU;
|
|
|
|
activation_map["Sign"] = &MLPPActivation::sign;
|
|
activationTest_map["Sign"] = &MLPPActivation::sign;
|
|
|
|
activation_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
|
|
|
|
activation_map["Sinh"] = &MLPPActivation::sinh;
|
|
activationTest_map["Sinh"] = &MLPPActivation::sinh;
|
|
|
|
activation_map["Cosh"] = &MLPPActivation::cosh;
|
|
activationTest_map["Cosh"] = &MLPPActivation::cosh;
|
|
|
|
activation_map["Tanh"] = &MLPPActivation::tanh;
|
|
activationTest_map["Tanh"] = &MLPPActivation::tanh;
|
|
|
|
activation_map["Csch"] = &MLPPActivation::csch;
|
|
activationTest_map["Csch"] = &MLPPActivation::csch;
|
|
|
|
activation_map["Sech"] = &MLPPActivation::sech;
|
|
activationTest_map["Sech"] = &MLPPActivation::sech;
|
|
|
|
activation_map["Coth"] = &MLPPActivation::coth;
|
|
activationTest_map["Coth"] = &MLPPActivation::coth;
|
|
|
|
activation_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
|
|
|
|
activation_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
|
|
|
|
activation_map["Artanh"] = &MLPPActivation::artanh;
|
|
activationTest_map["Artanh"] = &MLPPActivation::artanh;
|
|
|
|
activation_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
|
|
|
|
activation_map["Arsech"] = &MLPPActivation::arsech;
|
|
activationTest_map["Arsech"] = &MLPPActivation::arsech;
|
|
|
|
activation_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
|
|
}
|
|
|
|
void MLPPOldHiddenLayer::forwardPass() {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z = alg.mat_vec_add(alg.matmult(input, weights), bias);
|
|
a = (avn.*activation_map[activation])(z, 0);
|
|
}
|
|
|
|
void MLPPOldHiddenLayer::Test(std::vector<real_t> x) {
|
|
MLPPLinAlg alg;
|
|
MLPPActivation avn;
|
|
z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias);
|
|
a_test = (avn.*activationTest_map[activation])(z_test, 0);
|
|
}
|