mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-02-01 17:07:02 +01:00
Fixed warnings in MLPPANN.
This commit is contained in:
parent
7e738f79ee
commit
14c0cede56
126
mlpp/ann/ann.cpp
126
mlpp/ann/ann.cpp
@ -15,8 +15,15 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
MLPPANN::MLPPANN(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet) :
|
||||
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), lrScheduler("None"), decayConstant(0), dropRate(0) {
|
||||
MLPPANN::MLPPANN(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
|
||||
n = inputSet.size();
|
||||
k = inputSet[0].size();
|
||||
lrScheduler = "None";
|
||||
decayConstant = 0;
|
||||
dropRate = 0;
|
||||
}
|
||||
|
||||
MLPPANN::~MLPPANN() {
|
||||
@ -28,7 +35,7 @@ std::vector<real_t> MLPPANN::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
network[0].input = X;
|
||||
network[0].forwardPass();
|
||||
|
||||
for (int i = 1; i < network.size(); i++) {
|
||||
for (uint32_t i = 1; i < network.size(); i++) {
|
||||
network[i].input = network[i - 1].a;
|
||||
network[i].forwardPass();
|
||||
}
|
||||
@ -43,7 +50,7 @@ std::vector<real_t> MLPPANN::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
real_t MLPPANN::modelTest(std::vector<real_t> x) {
|
||||
if (!network.empty()) {
|
||||
network[0].Test(x);
|
||||
for (int i = 1; i < network.size(); i++) {
|
||||
for (uint32_t i = 1; i < network.size(); i++) {
|
||||
network[i].Test(network[i - 1].a_test);
|
||||
}
|
||||
outputLayer->Test(network[network.size() - 1].a_test);
|
||||
@ -66,7 +73,9 @@ void MLPPANN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
|
||||
cost_prev = Cost(y_hat, outputSet);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputSet);
|
||||
auto grads = computeGradients(y_hat, outputSet);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
|
||||
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
|
||||
@ -106,7 +115,10 @@ void MLPPANN::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||||
std::vector<real_t> y_hat = modelSetTest({ inputSet[outputIndex] });
|
||||
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, { outputSet[outputIndex] });
|
||||
auto grads = computeGradients(y_hat, { outputSet[outputIndex] });
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
|
||||
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
|
||||
|
||||
@ -137,14 +149,21 @@ void MLPPANN::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
while (true) {
|
||||
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
|
||||
for (int i = 0; i < n_mini_batch; i++) {
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeHiddenLayerWGrad);
|
||||
outputWGrad = alg.scalarMultiply(learning_rate / n, outputWGrad);
|
||||
|
||||
@ -175,7 +194,10 @@ void MLPPANN::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> v_hidden;
|
||||
@ -187,7 +209,9 @@ void MLPPANN::Momentum(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -232,7 +256,10 @@ void MLPPANN::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> v_hidden;
|
||||
@ -244,7 +271,9 @@ void MLPPANN::Adagrad(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -288,7 +317,10 @@ void MLPPANN::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> v_hidden;
|
||||
@ -300,7 +332,9 @@ void MLPPANN::Adadelta(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -344,7 +378,10 @@ void MLPPANN::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, rea
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> m_hidden;
|
||||
@ -358,7 +395,10 @@ void MLPPANN::Adam(real_t learning_rate, int max_epoch, int mini_batch_size, rea
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -411,7 +451,10 @@ void MLPPANN::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, r
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> m_hidden;
|
||||
@ -425,7 +468,10 @@ void MLPPANN::Adamax(real_t learning_rate, int max_epoch, int mini_batch_size, r
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && m_hidden.empty() && u_hidden.empty()) { // Initing our tensor
|
||||
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
|
||||
u_hidden = alg.resize(u_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -476,12 +522,14 @@ void MLPPANN::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, re
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> m_hidden;
|
||||
std::vector<std::vector<std::vector<real_t>>> v_hidden;
|
||||
std::vector<std::vector<std::vector<real_t>>> m_hidden_final;
|
||||
|
||||
std::vector<real_t> m_output;
|
||||
std::vector<real_t> v_output;
|
||||
@ -491,7 +539,10 @@ void MLPPANN::Nadam(real_t learning_rate, int max_epoch, int mini_batch_size, re
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -546,7 +597,10 @@ void MLPPANN::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
// always evaluate the result
|
||||
// always do forward pass only ONCE at end.
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
// Initializing necessary components for Adam.
|
||||
std::vector<std::vector<std::vector<real_t>>> m_hidden;
|
||||
@ -564,7 +618,10 @@ void MLPPANN::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
std::vector<real_t> y_hat = modelSetTest(inputMiniBatches[i]);
|
||||
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto grads = computeGradients(y_hat, outputMiniBatches[i]);
|
||||
auto cumulativeHiddenLayerWGrad = std::get<0>(grads);
|
||||
auto outputWGrad = std::get<1>(grads);
|
||||
|
||||
if (!network.empty() && m_hidden.empty() && v_hidden.empty()) { // Initing our tensor
|
||||
m_hidden = alg.resize(m_hidden, cumulativeHiddenLayerWGrad);
|
||||
v_hidden = alg.resize(v_hidden, cumulativeHiddenLayerWGrad);
|
||||
@ -606,21 +663,21 @@ void MLPPANN::AMSGrad(real_t learning_rate, int max_epoch, int mini_batch_size,
|
||||
}
|
||||
|
||||
real_t MLPPANN::score() {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
forwardPass();
|
||||
return util.performance(y_hat, outputSet);
|
||||
}
|
||||
|
||||
void MLPPANN::save(std::string fileName) {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
if (!network.empty()) {
|
||||
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
|
||||
for (int i = 1; i < network.size(); i++) {
|
||||
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
|
||||
util.saveParameters(fileName, network[0].weights, network[0].bias, false, 1);
|
||||
for (uint32_t i = 1; i < network.size(); i++) {
|
||||
util.saveParameters(fileName, network[i].weights, network[i].bias, true, i + 1);
|
||||
}
|
||||
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
|
||||
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, true, network.size() + 1);
|
||||
} else {
|
||||
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
|
||||
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, false, network.size() + 1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -661,7 +718,6 @@ void MLPPANN::addLayer(int n_hidden, std::string activation, std::string weightI
|
||||
}
|
||||
|
||||
void MLPPANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
|
||||
MLPPLinAlg alg;
|
||||
if (!network.empty()) {
|
||||
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
|
||||
} else {
|
||||
@ -676,7 +732,7 @@ real_t MLPPANN::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
|
||||
|
||||
auto cost_function = outputLayer->cost_map[outputLayer->cost];
|
||||
if (!network.empty()) {
|
||||
for (int i = 0; i < network.size() - 1; i++) {
|
||||
for (uint32_t i = 0; i < network.size() - 1; i++) {
|
||||
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
|
||||
}
|
||||
}
|
||||
@ -688,7 +744,7 @@ void MLPPANN::forwardPass() {
|
||||
network[0].input = inputSet;
|
||||
network[0].forwardPass();
|
||||
|
||||
for (int i = 1; i < network.size(); i++) {
|
||||
for (uint32_t i = 1; i < network.size(); i++) {
|
||||
network[i].input = network[i - 1].a;
|
||||
network[i].forwardPass();
|
||||
}
|
||||
@ -740,9 +796,9 @@ std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> M
|
||||
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
||||
|
||||
for (int i = network.size() - 2; i >= 0; i--) {
|
||||
auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
|
||||
hiddenLayerAvn = network[i].activation_map[network[i].activation];
|
||||
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
|
||||
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
|
||||
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
|
||||
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user