diff --git a/mlpp/hidden_layer/hidden_layer.cpp b/mlpp/hidden_layer/hidden_layer.cpp index bb8cbbd..f24a41a 100644 --- a/mlpp/hidden_layer/hidden_layer.cpp +++ b/mlpp/hidden_layer/hidden_layer.cpp @@ -12,6 +12,107 @@ #include #include +/* + +void MLPPHiddenLayer::forward_pass() { + MLPPLinAlg alg; + MLPPActivation avn; + z = alg.mat_vec_add(alg.matmult(input, weights), bias); + a = (avn.*activation_map[activation])(z, false); +} + +void MLPPHiddenLayer::test(std::vector x) { + MLPPLinAlg alg; + MLPPActivation avn; + z_test = alg.addition(alg.mat_vec_mult(alg.transpose(weights), x), bias); + a_test = (avn.*activationTest_map[activation])(z_test, 0); +} + +MLPPHiddenLayer::MLPPHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : + n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { + weights = MLPPUtilities::weightInitialization(input[0].size(), n_hidden, weightInit); + bias = MLPPUtilities::biasInitialization(n_hidden); + + activation_map["Linear"] = &MLPPActivation::linear; + activationTest_map["Linear"] = &MLPPActivation::linear; + + activation_map["Sigmoid"] = &MLPPActivation::sigmoid; + activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid; + + activation_map["Swish"] = &MLPPActivation::swish; + activationTest_map["Swish"] = &MLPPActivation::swish; + + activation_map["Mish"] = &MLPPActivation::mish; + activationTest_map["Mish"] = &MLPPActivation::mish; + + activation_map["SinC"] = &MLPPActivation::sinc; + activationTest_map["SinC"] = &MLPPActivation::sinc; + + activation_map["Softplus"] = &MLPPActivation::softplus; + activationTest_map["Softplus"] = &MLPPActivation::softplus; + + activation_map["Softsign"] = &MLPPActivation::softsign; + activationTest_map["Softsign"] = &MLPPActivation::softsign; + + activation_map["CLogLog"] = &MLPPActivation::cloglog; + activationTest_map["CLogLog"] = &MLPPActivation::cloglog; + + activation_map["Logit"] = &MLPPActivation::logit; + activationTest_map["Logit"] = &MLPPActivation::logit; + + activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; + activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF; + + activation_map["RELU"] = &MLPPActivation::RELU; + activationTest_map["RELU"] = &MLPPActivation::RELU; + + activation_map["GELU"] = &MLPPActivation::GELU; + activationTest_map["GELU"] = &MLPPActivation::GELU; + + activation_map["Sign"] = &MLPPActivation::sign; + activationTest_map["Sign"] = &MLPPActivation::sign; + + activation_map["UnitStep"] = &MLPPActivation::unitStep; + activationTest_map["UnitStep"] = &MLPPActivation::unitStep; + + activation_map["Sinh"] = &MLPPActivation::sinh; + activationTest_map["Sinh"] = &MLPPActivation::sinh; + + activation_map["Cosh"] = &MLPPActivation::cosh; + activationTest_map["Cosh"] = &MLPPActivation::cosh; + + activation_map["Tanh"] = &MLPPActivation::tanh; + activationTest_map["Tanh"] = &MLPPActivation::tanh; + + activation_map["Csch"] = &MLPPActivation::csch; + activationTest_map["Csch"] = &MLPPActivation::csch; + + activation_map["Sech"] = &MLPPActivation::sech; + activationTest_map["Sech"] = &MLPPActivation::sech; + + activation_map["Coth"] = &MLPPActivation::coth; + activationTest_map["Coth"] = &MLPPActivation::coth; + + activation_map["Arsinh"] = &MLPPActivation::arsinh; + activationTest_map["Arsinh"] = &MLPPActivation::arsinh; + + activation_map["Arcosh"] = &MLPPActivation::arcosh; + activationTest_map["Arcosh"] = &MLPPActivation::arcosh; + + activation_map["Artanh"] = &MLPPActivation::artanh; + activationTest_map["Artanh"] = &MLPPActivation::artanh; + + activation_map["Arcsch"] = &MLPPActivation::arcsch; + activationTest_map["Arcsch"] = &MLPPActivation::arcsch; + + activation_map["Arsech"] = &MLPPActivation::arsech; + activationTest_map["Arsech"] = &MLPPActivation::arsech; + + activation_map["Arcoth"] = &MLPPActivation::arcoth; + activationTest_map["Arcoth"] = &MLPPActivation::arcoth; +} + +*/ MLPPOldHiddenLayer::MLPPOldHiddenLayer(int n_hidden, std::string activation, std::vector> input, std::string weightInit, std::string reg, real_t lambda, real_t alpha) : n_hidden(n_hidden), activation(activation), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) { diff --git a/mlpp/hidden_layer/hidden_layer.h b/mlpp/hidden_layer/hidden_layer.h index 00e3484..5cbbdd2 100644 --- a/mlpp/hidden_layer/hidden_layer.h +++ b/mlpp/hidden_layer/hidden_layer.h @@ -8,14 +8,60 @@ // Created by Marc Melikyan on 11/4/20. // +#include "core/containers/hash_map.h" #include "core/math/math_defs.h" +#include "core/string/ustring.h" + +#include "core/object/reference.h" #include "../activation/activation.h" +#include "../lin_alg/mlpp_matrix.h" +#include "../lin_alg/mlpp_vector.h" + #include #include #include +class MLPPHiddenLayer : public Reference { + GDCLASS(MLPPHiddenLayer, Reference); + +public: + int n_hidden; + int activation; + + Ref input; + + Ref weights; + Ref bias; + + Ref z; + Ref a; + + HashMap (MLPPActivation::*)(const Ref &, bool)> activation_map; + HashMap (MLPPActivation::*)(const Ref &, bool)> activation_test_map; + + Ref z_test; + Ref a_test; + + Ref delta; + + // Regularization Params + String reg; + real_t lambda; /* Regularization Parameter */ + real_t alpha; /* This is the controlling param for Elastic Net*/ + + String weight_init; + + void forward_pass(); + void test(const Ref &x); + + MLPPHiddenLayer(int p_n_hidden, int p_activation, Ref p_input, String p_weight_init, String p_reg, real_t p_lambda, real_t p_alpha); + + MLPPHiddenLayer(); + ~MLPPHiddenLayer(); +}; + class MLPPOldHiddenLayer { public: @@ -51,5 +97,4 @@ public: void Test(std::vector x); }; - #endif /* HiddenLayer_hpp */ \ No newline at end of file