Initial cleanup pass on MLPPGAN.

This commit is contained in:
Relintai 2023-02-12 10:05:17 +01:00
parent f7c3506734
commit 689fbd397f
2 changed files with 248 additions and 162 deletions

View File

@ -14,64 +14,83 @@
#include <cmath>
#include <iostream>
MLPPGAN::MLPPGAN(real_t k, std::vector<std::vector<real_t>> outputSet) :
outputSet(outputSet), n(outputSet.size()), k(k) {
/*
Ref<MLPPMatrix> MLPPGAN::get_input_set() {
return _input_set;
}
void MLPPGAN::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
}
MLPPGAN::~MLPPGAN() {
delete outputLayer;
Ref<MLPPVector> MLPPGAN::get_output_set() {
return _output_set;
}
void MLPPGAN::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
}
std::vector<std::vector<real_t>> MLPPGAN::generateExample(int n) {
int MLPPGAN::get_k() {
return _k;
}
void MLPPGAN::set_k(const int val) {
_k = val;
}
*/
std::vector<std::vector<real_t>> MLPPGAN::generate_example(int n) {
MLPPLinAlg alg;
return modelSetTestGenerator(alg.gaussianNoise(n, k));
return model_set_test_generator(alg.gaussianNoise(n, _k));
}
void MLPPGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
class MLPPCost cost;
void MLPPGAN::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
MLPPCost mlpp_cost;
MLPPLinAlg alg;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
forward_pass();
while (true) {
cost_prev = Cost(y_hat, alg.onevec(n));
cost_prev = cost(_y_hat, alg.onevec(_n));
// Training of the discriminator.
std::vector<std::vector<real_t>> generatorInputSet = alg.gaussianNoise(n, k);
std::vector<std::vector<real_t>> discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
discriminatorInputSet.insert(discriminatorInputSet.end(), outputSet.begin(), outputSet.end()); // Fake + real inputs.
std::vector<std::vector<real_t>> generator_input_set = alg.gaussianNoise(_n, _k);
std::vector<std::vector<real_t>> discriminator_input_set = model_set_test_generator(generator_input_set);
discriminator_input_set.insert(discriminator_input_set.end(), _output_set.begin(), _output_set.end()); // Fake + real inputs.
std::vector<real_t> y_hat = modelSetTestDiscriminator(discriminatorInputSet);
std::vector<real_t> outputSet = alg.zerovec(n);
std::vector<real_t> outputSetReal = alg.onevec(n);
outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores.
std::vector<real_t> y_hat = model_set_test_discriminator(discriminator_input_set);
std::vector<real_t> _output_set = alg.zerovec(_n);
std::vector<real_t> _output_setReal = alg.onevec(_n);
_output_set.insert(_output_set.end(), _output_setReal.begin(), _output_setReal.end()); // Fake + real output scores.
auto dgrads = computeDiscriminatorGradients(y_hat, outputSet);
auto cumulativeDiscriminatorHiddenLayerWGrad = std::get<0>(dgrads);
auto dgrads = compute_discriminator_gradients(y_hat, _output_set);
auto cumulative_discriminator_hidden_layer_w_grad = std::get<0>(dgrads);
auto outputDiscriminatorWGrad = std::get<1>(dgrads);
cumulativeDiscriminatorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeDiscriminatorHiddenLayerWGrad);
outputDiscriminatorWGrad = alg.scalarMultiply(learning_rate / n, outputDiscriminatorWGrad);
updateDiscriminatorParameters(cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad, learning_rate);
cumulative_discriminator_hidden_layer_w_grad = alg.scalarMultiply(learning_rate / _n, cumulative_discriminator_hidden_layer_w_grad);
outputDiscriminatorWGrad = alg.scalarMultiply(learning_rate / _n, outputDiscriminatorWGrad);
update_discriminator_parameters(cumulative_discriminator_hidden_layer_w_grad, outputDiscriminatorWGrad, learning_rate);
// Training of the generator.
generatorInputSet = alg.gaussianNoise(n, k);
discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
y_hat = modelSetTestDiscriminator(discriminatorInputSet);
outputSet = alg.onevec(n);
generator_input_set = alg.gaussianNoise(_n, _k);
discriminator_input_set = model_set_test_generator(generator_input_set);
y_hat = model_set_test_discriminator(discriminator_input_set);
_output_set = alg.onevec(_n);
std::vector<std::vector<std::vector<real_t>>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet);
cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate / n, cumulativeGeneratorHiddenLayerWGrad);
updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate);
std::vector<std::vector<std::vector<real_t>>> cumulative_generator_hidden_layer_w_grad = compute_generator_gradients(y_hat, _output_set);
cumulative_generator_hidden_layer_w_grad = alg.scalarMultiply(learning_rate / _n, cumulative_generator_hidden_layer_w_grad);
update_generator_parameters(cumulative_generator_hidden_layer_w_grad, learning_rate);
forwardPass();
if (UI) {
MLPPGAN::UI(epoch, cost_prev, MLPPGAN::y_hat, alg.onevec(n));
forward_pass();
if (ui) {
print_ui(epoch, cost_prev, _y_hat, alg.onevec(_n));
}
epoch++;
if (epoch > max_epoch) {
break;
}
@ -81,135 +100,159 @@ void MLPPGAN::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
real_t MLPPGAN::score() {
MLPPLinAlg alg;
MLPPUtilities util;
forwardPass();
return util.performance(y_hat, alg.onevec(n));
forward_pass();
return util.performance(_y_hat, alg.onevec(_n));
}
void MLPPGAN::save(std::string fileName) {
MLPPUtilities util;
if (!network.empty()) {
util.saveParameters(fileName, network[0].weights, network[0].bias, false, 1);
for (uint32_t i = 1; i < network.size(); i++) {
util.saveParameters(fileName, network[i].weights, network[i].bias, true, i + 1);
if (!_network.empty()) {
util.saveParameters(fileName, _network[0].weights, _network[0].bias, false, 1);
for (uint32_t i = 1; i < _network.size(); i++) {
util.saveParameters(fileName, _network[i].weights, _network[i].bias, true, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, true, network.size() + 1);
util.saveParameters(fileName, _output_layer->weights, _output_layer->bias, true, _network.size() + 1);
} else {
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, false, network.size() + 1);
util.saveParameters(fileName, _output_layer->weights, _output_layer->bias, false, _network.size() + 1);
}
}
void MLPPGAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
void MLPPGAN::add_layer(int n_hidden, std::string activation, std::string weight_init, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
if (network.empty()) {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
network[0].forwardPass();
if (_network.empty()) {
_network.push_back(MLPPOldHiddenLayer(n_hidden, activation, alg.gaussianNoise(_n, _k), weight_init, reg, lambda, alpha));
_network[0].forwardPass();
} else {
network.push_back(MLPPOldHiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
_network.push_back(MLPPOldHiddenLayer(n_hidden, activation, _network[_network.size() - 1].a, weight_init, reg, lambda, alpha));
_network[_network.size() - 1].forwardPass();
}
}
void MLPPGAN::addOutputLayer(std::string weightInit, std::string reg, real_t lambda, real_t alpha) {
void MLPPGAN::add_output_layer(std::string weight_init, std::string reg, real_t lambda, real_t alpha) {
MLPPLinAlg alg;
if (!network.empty()) {
outputLayer = new MLPPOldOutputLayer(network[network.size() - 1].n_hidden, "Sigmoid", "LogLoss", network[network.size() - 1].a, weightInit, reg, lambda, alpha);
if (!_network.empty()) {
_output_layer = new MLPPOldOutputLayer(_network[_network.size() - 1].n_hidden, "Sigmoid", "LogLoss", _network[_network.size() - 1].a, weight_init, reg, lambda, alpha);
} else {
outputLayer = new MLPPOldOutputLayer(k, "Sigmoid", "LogLoss", alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha);
_output_layer = new MLPPOldOutputLayer(_k, "Sigmoid", "LogLoss", alg.gaussianNoise(_n, _k), weight_init, reg, lambda, alpha);
}
}
std::vector<std::vector<real_t>> MLPPGAN::modelSetTestGenerator(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
network[0].input = X;
network[0].forwardPass();
MLPPGAN::MLPPGAN(real_t k, std::vector<std::vector<real_t>> output_set) {
_output_set = output_set;
_n = _output_set.size();
_k = k;
}
for (uint32_t i = 1; i <= network.size() / 2; i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
MLPPGAN::MLPPGAN() {
}
MLPPGAN::~MLPPGAN() {
delete _output_layer;
}
std::vector<std::vector<real_t>> MLPPGAN::model_set_test_generator(std::vector<std::vector<real_t>> X) {
if (!_network.empty()) {
_network[0].input = X;
_network[0].forwardPass();
for (uint32_t i = 1; i <= _network.size() / 2; i++) {
_network[i].input = _network[i - 1].a;
_network[i].forwardPass();
}
}
return network[network.size() / 2].a;
return _network[_network.size() / 2].a;
}
std::vector<real_t> MLPPGAN::modelSetTestDiscriminator(std::vector<std::vector<real_t>> X) {
if (!network.empty()) {
for (uint32_t i = network.size() / 2 + 1; i < network.size(); i++) {
if (i == network.size() / 2 + 1) {
network[i].input = X;
std::vector<real_t> MLPPGAN::model_set_test_discriminator(std::vector<std::vector<real_t>> X) {
if (!_network.empty()) {
for (uint32_t i = _network.size() / 2 + 1; i < _network.size(); i++) {
if (i == _network.size() / 2 + 1) {
_network[i].input = X;
} else {
network[i].input = network[i - 1].a;
_network[i].input = _network[i - 1].a;
}
network[i].forwardPass();
_network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
_output_layer->input = _network[_network.size() - 1].a;
}
outputLayer->forwardPass();
return outputLayer->a;
_output_layer->forwardPass();
return _output_layer->a;
}
real_t MLPPGAN::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
real_t MLPPGAN::cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
MLPPReg regularization;
class MLPPCost cost;
real_t totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if (!network.empty()) {
for (uint32_t i = 0; i < network.size() - 1; i++) {
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
auto cost_function = _output_layer->cost_map[_output_layer->cost];
if (!_network.empty()) {
for (uint32_t i = 0; i < _network.size() - 1; i++) {
totalRegTerm += regularization.regTerm(_network[i].weights, _network[i].lambda, _network[i].alpha, _network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(_output_layer->weights, _output_layer->lambda, _output_layer->alpha, _output_layer->reg);
}
void MLPPGAN::forwardPass() {
void MLPPGAN::forward_pass() {
MLPPLinAlg alg;
if (!network.empty()) {
network[0].input = alg.gaussianNoise(n, k);
network[0].forwardPass();
for (uint32_t i = 1; i < network.size(); i++) {
network[i].input = network[i - 1].a;
network[i].forwardPass();
if (!_network.empty()) {
_network[0].input = alg.gaussianNoise(_n, _k);
_network[0].forwardPass();
for (uint32_t i = 1; i < _network.size(); i++) {
_network[i].input = _network[i - 1].a;
_network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
_output_layer->input = _network[_network.size() - 1].a;
} else { // Should never happen, though.
outputLayer->input = alg.gaussianNoise(n, k);
_output_layer->input = alg.gaussianNoise(_n, _k);
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
_output_layer->forwardPass();
_y_hat = _output_layer->a;
}
void MLPPGAN::updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate) {
void MLPPGAN::update_discriminator_parameters(std::vector<std::vector<std::vector<real_t>>> hidden_layer_updations, std::vector<real_t> output_layer_updation, real_t learning_rate) {
MLPPLinAlg alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
_output_layer->weights = alg.subtraction(_output_layer->weights, output_layer_updation);
_output_layer->bias -= learning_rate * alg.sum_elements(_output_layer->delta) / _n;
if (!network.empty()) {
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate / n, network[network.size() - 1].delta));
if (!_network.empty()) {
_network[_network.size() - 1].weights = alg.subtraction(_network[_network.size() - 1].weights, hidden_layer_updations[0]);
_network[_network.size() - 1].bias = alg.subtractMatrixRows(_network[_network.size() - 1].bias, alg.scalarMultiply(learning_rate / _n, _network[_network.size() - 1].delta));
for (int i = static_cast<int>(network.size()) - 2; i > static_cast<int>(network.size()) / 2; i--) {
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
for (int i = static_cast<int>(_network.size()) - 2; i > static_cast<int>(_network.size()) / 2; i--) {
_network[i].weights = alg.subtraction(_network[i].weights, hidden_layer_updations[(_network.size() - 2) - i + 1]);
_network[i].bias = alg.subtractMatrixRows(_network[i].bias, alg.scalarMultiply(learning_rate / _n, _network[i].delta));
}
}
}
void MLPPGAN::updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate) {
void MLPPGAN::update_generator_parameters(std::vector<std::vector<std::vector<real_t>>> hidden_layer_updations, real_t learning_rate) {
MLPPLinAlg alg;
if (!network.empty()) {
for (int i = network.size() / 2; i >= 0; i--) {
if (!_network.empty()) {
for (int i = _network.size() / 2; i >= 0; i--) {
//std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl;
//std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl;
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate / n, network[i].delta));
//std::cout << hidden_layer_updations[(network.size() - 2) - i + 1].size() << "x" << hidden_layer_updations[(network.size() - 2) - i + 1][0].size() << std::endl;
_network[i].weights = alg.subtraction(_network[i].weights, hidden_layer_updations[(_network.size() - 2) - i + 1]);
_network[i].bias = alg.subtractMatrixRows(_network[i].bias, alg.scalarMultiply(learning_rate / _n, _network[i].delta));
}
}
}
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPGAN::computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> MLPPGAN::compute_discriminator_gradients(std::vector<real_t> y_hat, std::vector<real_t> _output_set) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
@ -217,35 +260,35 @@ std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> M
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
auto costDeriv = _output_layer->costDeriv_map[_output_layer->cost];
auto outputAvn = _output_layer->activation_map[_output_layer->activation];
_output_layer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, _output_set), (avn.*outputAvn)(_output_layer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(_output_layer->input), _output_layer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(_output_layer->weights, _output_layer->lambda, _output_layer->alpha, _output_layer->reg));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
if (!_network.empty()) {
auto hiddenLayerAvn = _network[_network.size() - 1].activation_map[_network[_network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
_network[_network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(_output_layer->delta, _output_layer->weights), (avn.*hiddenLayerAvn)(_network[_network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(_network[_network.size() - 1].input), _network[_network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(_network[_network.size() - 1].weights, _network[_network.size() - 1].lambda, _network[_network.size() - 1].alpha, _network[_network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
//std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl;
//std::cout << "WEIGHTS SECOND:" << network[network.size() - 1].weights.size() << "x" << network[network.size() - 1].weights[0].size() << std::endl;
for (int i = static_cast<int>(network.size()) - 2; i > static_cast<int>(network.size()) / 2; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
for (int i = static_cast<int>(_network.size()) - 2; i > static_cast<int>(_network.size()) / 2; i--) {
hiddenLayerAvn = _network[i].activation_map[_network[i].activation];
_network[i].delta = alg.hadamard_product(alg.matmult(_network[i + 1].delta, alg.transpose(_network[i + 1].weights)), (avn.*hiddenLayerAvn)(_network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(_network[i].input), _network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(_network[i].weights, _network[i].lambda, _network[i].alpha, _network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return { cumulativeHiddenLayerWGrad, outputWGrad };
}
std::vector<std::vector<std::vector<real_t>>> MLPPGAN::computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
std::vector<std::vector<std::vector<real_t>>> MLPPGAN::compute_generator_gradients(std::vector<real_t> y_hat, std::vector<real_t> _output_set) {
class MLPPCost cost;
MLPPActivation avn;
MLPPLinAlg alg;
@ -253,35 +296,57 @@ std::vector<std::vector<std::vector<real_t>>> MLPPGAN::computeGeneratorGradients
std::vector<std::vector<std::vector<real_t>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if (!network.empty()) {
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
auto costDeriv = _output_layer->costDeriv_map[_output_layer->cost];
auto outputAvn = _output_layer->activation_map[_output_layer->activation];
_output_layer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, _output_set), (avn.*outputAvn)(_output_layer->z, true));
std::vector<real_t> outputWGrad = alg.mat_vec_mult(alg.transpose(_output_layer->input), _output_layer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(_output_layer->weights, _output_layer->lambda, _output_layer->alpha, _output_layer->reg));
for (int i = network.size() - 2; i >= 0; i--) {
hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
if (!_network.empty()) {
auto hiddenLayerAvn = _network[_network.size() - 1].activation_map[_network[_network.size() - 1].activation];
_network[_network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(_output_layer->delta, _output_layer->weights), (avn.*hiddenLayerAvn)(_network[_network.size() - 1].z, 1));
std::vector<std::vector<real_t>> hiddenLayerWGrad = alg.matmult(alg.transpose(_network[_network.size() - 1].input), _network[_network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(_network[_network.size() - 1].weights, _network[_network.size() - 1].lambda, _network[_network.size() - 1].alpha, _network[_network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for (int i = _network.size() - 2; i >= 0; i--) {
hiddenLayerAvn = _network[i].activation_map[_network[i].activation];
_network[i].delta = alg.hadamard_product(alg.matmult(_network[i + 1].delta, alg.transpose(_network[i + 1].weights)), (avn.*hiddenLayerAvn)(_network[i].z, true));
hiddenLayerWGrad = alg.matmult(alg.transpose(_network[i].input), _network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(_network[i].weights, _network[i].lambda, _network[i].alpha, _network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return cumulativeHiddenLayerWGrad;
}
void MLPPGAN::UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
MLPPUtilities::UI(outputLayer->weights, outputLayer->bias);
if (!network.empty()) {
for (int i = network.size() - 1; i >= 0; i--) {
void MLPPGAN::print_ui(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> _output_set) {
MLPPUtilities::CostInfo(epoch, cost_prev, cost(y_hat, _output_set));
std::cout << "Layer " << _network.size() + 1 << ": " << std::endl;
MLPPUtilities::UI(_output_layer->weights, _output_layer->bias);
if (!_network.empty()) {
for (int i = _network.size() - 1; i >= 0; i--) {
std::cout << "Layer " << i + 1 << ": " << std::endl;
MLPPUtilities::UI(network[i].weights, network[i].bias);
MLPPUtilities::UI(_network[i].weights, _network[i].bias);
}
}
}
void MLPPGAN::_bind_methods() {
/*
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPGAN::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "value"), &MLPPGAN::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPGAN::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "value"), &MLPPGAN::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_k"), &MLPPGAN::get_k);
ClassDB::bind_method(D_METHOD("set_k", "value"), &MLPPGAN::set_k);
ADD_PROPERTY(PropertyInfo(Variant::INT, "k"), "set_k", "get_k");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPGAN::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPGAN::model_test);
ClassDB::bind_method(D_METHOD("score"), &MLPPGAN::score);
*/
}

View File

@ -22,38 +22,59 @@
class MLPPGAN {
public:
MLPPGAN(real_t k, std::vector<std::vector<real_t>> outputSet);
~MLPPGAN();
std::vector<std::vector<real_t>> generateExample(int n);
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
int get_k();
void set_k(const int val);
*/
std::vector<std::vector<real_t>> generate_example(int n);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
real_t score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void addOutputLayer(std::string weightInit = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void save(std::string file_name);
private:
std::vector<std::vector<real_t>> modelSetTestGenerator(std::vector<std::vector<real_t>> X); // Evaluator for the generator of the gan.
std::vector<real_t> modelSetTestDiscriminator(std::vector<std::vector<real_t>> X); // Evaluator for the discriminator of the gan.
void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
MLPPGAN(real_t k, std::vector<std::vector<real_t>> output_set);
void forwardPass();
void updateDiscriminatorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate);
void updateGeneratorParameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, real_t learning_rate);
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> computeDiscriminatorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
std::vector<std::vector<std::vector<real_t>>> computeGeneratorGradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
MLPPGAN();
~MLPPGAN();
void UI(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet);
protected:
std::vector<std::vector<real_t>> model_set_test_generator(std::vector<std::vector<real_t>> X); // Evaluator for the generator of the gan.
std::vector<real_t> model_set_test_discriminator(std::vector<std::vector<real_t>> X); // Evaluator for the discriminator of the gan.
std::vector<std::vector<real_t>> outputSet;
std::vector<real_t> y_hat;
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
std::vector<MLPPOldHiddenLayer> network;
MLPPOldOutputLayer *outputLayer;
void forward_pass();
int n;
int k;
void update_discriminator_parameters(std::vector<std::vector<std::vector<real_t>>> hidden_layer_updations, std::vector<real_t> output_layer_updation, real_t learning_rate);
void update_generator_parameters(std::vector<std::vector<std::vector<real_t>>> hidden_layer_updations, real_t learning_rate);
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> compute_discriminator_gradients(std::vector<real_t> y_hat, std::vector<real_t> output_set);
std::vector<std::vector<std::vector<real_t>>> compute_generator_gradients(std::vector<real_t> y_hat, std::vector<real_t> output_set);
void print_ui(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> output_set);
static void _bind_methods();
std::vector<std::vector<real_t>> _output_set;
std::vector<real_t> _y_hat;
std::vector<MLPPOldHiddenLayer> _network;
MLPPOldOutputLayer *_output_layer;
int _n;
int _k;
};
#endif /* GAN_hpp */