mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-01-02 16:29:35 +01:00
Added SVCOld.
This commit is contained in:
parent
605a10d8f6
commit
6465280167
1
SCsub
1
SCsub
@ -59,6 +59,7 @@ sources = [
|
||||
"mlpp/uni_lin_reg/uni_lin_reg_old.cpp",
|
||||
"mlpp/outlier_finder/outlier_finder_old.cpp",
|
||||
"mlpp/probit_reg/probit_reg_old.cpp",
|
||||
"mlpp/svc/svc_old.cpp",
|
||||
|
||||
"test/mlpp_tests.cpp",
|
||||
]
|
||||
|
203
mlpp/svc/svc_old.cpp
Normal file
203
mlpp/svc/svc_old.cpp
Normal file
@ -0,0 +1,203 @@
|
||||
//
|
||||
// SVC.cpp
|
||||
//
|
||||
// Created by Marc Melikyan on 10/2/20.
|
||||
//
|
||||
|
||||
#include "svc_old.h"
|
||||
#include "../activation/activation.h"
|
||||
#include "../cost/cost.h"
|
||||
#include "../lin_alg/lin_alg.h"
|
||||
#include "../regularization/reg.h"
|
||||
#include "../utilities/utilities.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
std::vector<real_t> MLPPSVCOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
return Evaluate(X);
|
||||
}
|
||||
|
||||
real_t MLPPSVCOld::modelTest(std::vector<real_t> x) {
|
||||
return Evaluate(x);
|
||||
}
|
||||
|
||||
void MLPPSVCOld::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
|
||||
class MLPPCost cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
forwardPass();
|
||||
|
||||
while (true) {
|
||||
cost_prev = Cost(y_hat, outputSet, weights, C);
|
||||
|
||||
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), cost.HingeLossDeriv(z, outputSet, C))));
|
||||
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge");
|
||||
|
||||
// Calculating the bias gradients
|
||||
bias += learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputSet, C)) / n;
|
||||
|
||||
forwardPass();
|
||||
|
||||
// UI PORTION
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet, weights, C));
|
||||
MLPPUtilities::UI(weights, bias);
|
||||
}
|
||||
epoch++;
|
||||
|
||||
if (epoch > max_epoch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MLPPSVCOld::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||||
class MLPPCost cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
|
||||
while (true) {
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
int outputIndex = distribution(generator);
|
||||
|
||||
//real_t y_hat = Evaluate(inputSet[outputIndex]);
|
||||
real_t z = propagate(inputSet[outputIndex]);
|
||||
cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C);
|
||||
|
||||
real_t costDeriv = cost.HingeLossDeriv(std::vector<real_t>({ z }), std::vector<real_t>({ outputSet[outputIndex] }), C)[0]; // Explicit conversion to avoid ambiguity with overloaded function. Error occured on Ubuntu.
|
||||
|
||||
// Weight Updation
|
||||
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * costDeriv, inputSet[outputIndex]));
|
||||
weights = regularization.regWeights(weights, learning_rate, 0, "Ridge");
|
||||
|
||||
// Bias updation
|
||||
bias -= learning_rate * costDeriv;
|
||||
|
||||
//y_hat = Evaluate({ inputSet[outputIndex] });
|
||||
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ z }, { outputSet[outputIndex] }, weights, C));
|
||||
MLPPUtilities::UI(weights, bias);
|
||||
}
|
||||
|
||||
epoch++;
|
||||
|
||||
if (epoch > max_epoch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
forwardPass();
|
||||
}
|
||||
|
||||
void MLPPSVCOld::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
|
||||
class MLPPCost cost;
|
||||
MLPPActivation avn;
|
||||
MLPPLinAlg alg;
|
||||
MLPPReg regularization;
|
||||
real_t cost_prev = 0;
|
||||
int epoch = 1;
|
||||
|
||||
// Creating the mini-batches
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
while (true) {
|
||||
for (int i = 0; i < n_mini_batch; i++) {
|
||||
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
|
||||
std::vector<real_t> z = propagate(inputMiniBatches[i]);
|
||||
cost_prev = Cost(z, outputMiniBatches[i], weights, C);
|
||||
|
||||
// Calculating the weight gradients
|
||||
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), cost.HingeLossDeriv(z, outputMiniBatches[i], C))));
|
||||
weights = regularization.regWeights(weights, learning_rate / n, 0, "Ridge");
|
||||
|
||||
// Calculating the bias gradients
|
||||
bias -= learning_rate * alg.sum_elements(cost.HingeLossDeriv(y_hat, outputMiniBatches[i], C)) / n;
|
||||
|
||||
forwardPass();
|
||||
|
||||
y_hat = Evaluate(inputMiniBatches[i]);
|
||||
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(z, outputMiniBatches[i], weights, C));
|
||||
MLPPUtilities::UI(weights, bias);
|
||||
}
|
||||
}
|
||||
epoch++;
|
||||
if (epoch > max_epoch) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
forwardPass();
|
||||
}
|
||||
|
||||
real_t MLPPSVCOld::score() {
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
}
|
||||
|
||||
void MLPPSVCOld::save(std::string fileName) {
|
||||
MLPPUtilities util;
|
||||
util.saveParameters(fileName, weights, bias);
|
||||
}
|
||||
|
||||
MLPPSVCOld::MLPPSVCOld(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
n = inputSet.size();
|
||||
k = inputSet[0].size();
|
||||
C = p_C;
|
||||
|
||||
y_hat.resize(n);
|
||||
weights = MLPPUtilities::weightInitialization(k);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
}
|
||||
|
||||
real_t MLPPSVCOld::Cost(std::vector<real_t> z, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
|
||||
class MLPPCost cost;
|
||||
return cost.HingeLoss(z, y, weights, C);
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPSVCOld::Evaluate(std::vector<std::vector<real_t>> X) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return avn.sign(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPSVCOld::propagate(std::vector<std::vector<real_t>> X) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
||||
}
|
||||
|
||||
real_t MLPPSVCOld::Evaluate(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return avn.sign(alg.dot(weights, x) + bias);
|
||||
}
|
||||
|
||||
real_t MLPPSVCOld::propagate(std::vector<real_t> x) {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
return alg.dot(weights, x) + bias;
|
||||
}
|
||||
|
||||
// sign ( wTx + b )
|
||||
void MLPPSVCOld::forwardPass() {
|
||||
MLPPActivation avn;
|
||||
|
||||
z = propagate(inputSet);
|
||||
y_hat = avn.sign(z);
|
||||
}
|
55
mlpp/svc/svc_old.h
Normal file
55
mlpp/svc/svc_old.h
Normal file
@ -0,0 +1,55 @@
|
||||
|
||||
#ifndef MLPP_SVC_OLD_H
|
||||
#define MLPP_SVC_OLD_H
|
||||
|
||||
//
|
||||
// SVC.hpp
|
||||
//
|
||||
// Created by Marc Melikyan on 10/2/20.
|
||||
//
|
||||
|
||||
// https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2
|
||||
// Illustratd a practical definition of the Hinge Loss function and its gradient when optimizing with SGD.
|
||||
|
||||
#include "core/math/math_defs.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class MLPPSVCOld {
|
||||
public:
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void SGD(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
MLPPSVCOld(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C);
|
||||
|
||||
private:
|
||||
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C);
|
||||
|
||||
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
|
||||
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
|
||||
real_t Evaluate(std::vector<real_t> x);
|
||||
real_t propagate(std::vector<real_t> x);
|
||||
void forwardPass();
|
||||
|
||||
std::vector<std::vector<real_t>> inputSet;
|
||||
std::vector<real_t> outputSet;
|
||||
std::vector<real_t> z;
|
||||
std::vector<real_t> y_hat;
|
||||
std::vector<real_t> weights;
|
||||
real_t bias;
|
||||
|
||||
real_t C;
|
||||
int n;
|
||||
int k;
|
||||
|
||||
// UI Portion
|
||||
void UI(int epoch, real_t cost_prev);
|
||||
};
|
||||
|
||||
#endif /* SVC_hpp */
|
@ -53,6 +53,7 @@
|
||||
#include "../mlpp/probit_reg/probit_reg_old.h"
|
||||
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
|
||||
#include "../mlpp/wgan/wgan_old.h"
|
||||
#include "../mlpp/svc/svc_old.h"
|
||||
|
||||
Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) {
|
||||
Vector<real_t> r;
|
||||
@ -413,10 +414,10 @@ void MLPPTests::test_support_vector_classification(bool ui) {
|
||||
|
||||
// SUPPORT VECTOR CLASSIFICATION
|
||||
Ref<MLPPDataSimple> dt = data.load_breast_cancer_svc(_breast_cancer_svm_data_path);
|
||||
MLPPSVC model(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui);
|
||||
model.SGD(0.00001, 100000, ui);
|
||||
alg.printVector(model.modelSetTest(dt->get_input()->to_std_vector()));
|
||||
std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
||||
MLPPSVCOld model_old(dt->get_input()->to_std_vector(), dt->get_output()->to_std_vector(), ui);
|
||||
model_old.SGD(0.00001, 100000, ui);
|
||||
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
|
||||
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
|
||||
}
|
||||
|
||||
void MLPPTests::test_mlp(bool ui) {
|
||||
|
Loading…
Reference in New Issue
Block a user