mirror of
https://github.com/Relintai/pmlpp.git
synced 2025-02-06 17:45:55 +01:00
Fixed warnings in SVC.
This commit is contained in:
parent
62492c8fde
commit
605a10d8f6
@ -14,14 +14,6 @@
|
||||
#include <iostream>
|
||||
#include <random>
|
||||
|
||||
|
||||
MLPPSVC::MLPPSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C) :
|
||||
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), C(C) {
|
||||
y_hat.resize(n);
|
||||
weights = MLPPUtilities::weightInitialization(k);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
}
|
||||
|
||||
std::vector<real_t> MLPPSVC::modelSetTest(std::vector<std::vector<real_t>> X) {
|
||||
return Evaluate(X);
|
||||
}
|
||||
@ -78,7 +70,7 @@ void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||||
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
int outputIndex = distribution(generator);
|
||||
|
||||
real_t y_hat = Evaluate(inputSet[outputIndex]);
|
||||
//real_t y_hat = Evaluate(inputSet[outputIndex]);
|
||||
real_t z = propagate(inputSet[outputIndex]);
|
||||
cost_prev = Cost({ z }, { outputSet[outputIndex] }, weights, C);
|
||||
|
||||
@ -91,12 +83,13 @@ void MLPPSVC::SGD(real_t learning_rate, int max_epoch, bool UI) {
|
||||
// Bias updation
|
||||
bias -= learning_rate * costDeriv;
|
||||
|
||||
y_hat = Evaluate({ inputSet[outputIndex] });
|
||||
//y_hat = Evaluate({ inputSet[outputIndex] });
|
||||
|
||||
if (UI) {
|
||||
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ z }, { outputSet[outputIndex] }, weights, C));
|
||||
MLPPUtilities::UI(weights, bias);
|
||||
}
|
||||
|
||||
epoch++;
|
||||
|
||||
if (epoch > max_epoch) {
|
||||
@ -116,7 +109,9 @@ void MLPPSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
|
||||
// Creating the mini-batches
|
||||
int n_mini_batch = n / mini_batch_size;
|
||||
auto [inputMiniBatches, outputMiniBatches] = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto batches = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
||||
auto inputMiniBatches = std::get<0>(batches);
|
||||
auto outputMiniBatches = std::get<1>(batches);
|
||||
|
||||
while (true) {
|
||||
for (int i = 0; i < n_mini_batch; i++) {
|
||||
@ -149,15 +144,27 @@ void MLPPSVC::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, boo
|
||||
}
|
||||
|
||||
real_t MLPPSVC::score() {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
return util.performance(y_hat, outputSet);
|
||||
}
|
||||
|
||||
void MLPPSVC::save(std::string fileName) {
|
||||
MLPPUtilities util;
|
||||
MLPPUtilities util;
|
||||
util.saveParameters(fileName, weights, bias);
|
||||
}
|
||||
|
||||
MLPPSVC::MLPPSVC(std::vector<std::vector<real_t>> p_inputSet, std::vector<real_t> p_outputSet, real_t p_C) {
|
||||
inputSet = p_inputSet;
|
||||
outputSet = p_outputSet;
|
||||
n = inputSet.size();
|
||||
k = inputSet[0].size();
|
||||
C = p_C;
|
||||
|
||||
y_hat.resize(n);
|
||||
weights = MLPPUtilities::weightInitialization(k);
|
||||
bias = MLPPUtilities::biasInitialization();
|
||||
}
|
||||
|
||||
real_t MLPPSVC::Cost(std::vector<real_t> z, std::vector<real_t> y, std::vector<real_t> weights, real_t C) {
|
||||
class MLPPCost cost;
|
||||
return cost.HingeLoss(z, y, weights, C);
|
||||
@ -189,7 +196,6 @@ real_t MLPPSVC::propagate(std::vector<real_t> x) {
|
||||
|
||||
// sign ( wTx + b )
|
||||
void MLPPSVC::forwardPass() {
|
||||
MLPPLinAlg alg;
|
||||
MLPPActivation avn;
|
||||
|
||||
z = propagate(inputSet);
|
||||
|
@ -16,11 +16,8 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
|
||||
|
||||
class MLPPSVC {
|
||||
public:
|
||||
MLPPSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C);
|
||||
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
|
||||
real_t modelTest(std::vector<real_t> x);
|
||||
void gradientDescent(real_t learning_rate, int max_epoch, bool UI = false);
|
||||
@ -29,6 +26,8 @@ public:
|
||||
real_t score();
|
||||
void save(std::string fileName);
|
||||
|
||||
MLPPSVC(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, real_t C);
|
||||
|
||||
private:
|
||||
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y, std::vector<real_t> weights, real_t C);
|
||||
|
||||
@ -53,5 +52,4 @@ private:
|
||||
void UI(int epoch, real_t cost_prev);
|
||||
};
|
||||
|
||||
|
||||
#endif /* SVC_hpp */
|
||||
|
Loading…
Reference in New Issue
Block a user