Cleaned up ProbitReg.

This commit is contained in:
Relintai 2023-02-09 20:20:45 +01:00
parent 9fb703f108
commit 62492c8fde
4 changed files with 361 additions and 129 deletions

View File

@ -5,55 +5,98 @@
//
#include "probit_reg.h"
#include "../activation/activation.h"
#include "../cost/cost.h"
#include "../lin_alg/lin_alg.h"
#include "../regularization/reg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPProbitReg::MLPPProbitReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg, real_t lambda, real_t alpha) :
inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) {
y_hat.resize(n);
weights = MLPPUtilities::weightInitialization(k);
bias = MLPPUtilities::biasInitialization();
Ref<MLPPMatrix> MLPPProbitReg::get_input_set() {
return _input_set;
}
void MLPPProbitReg::set_input_set(const Ref<MLPPMatrix> &val) {
_input_set = val;
_initialized = false;
}
std::vector<real_t> MLPPProbitReg::modelSetTest(std::vector<std::vector<real_t>> X) {
return Evaluate(X);
Ref<MLPPVector> MLPPProbitReg::get_output_set() {
return _output_set;
}
void MLPPProbitReg::set_output_set(const Ref<MLPPVector> &val) {
_output_set = val;
_initialized = false;
}
real_t MLPPProbitReg::modelTest(std::vector<real_t> x) {
return Evaluate(x);
MLPPReg::RegularizationType MLPPProbitReg::get_reg() {
return _reg;
}
void MLPPProbitReg::set_reg(const MLPPReg::RegularizationType val) {
_reg = val;
_initialized = false;
}
void MLPPProbitReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) {
real_t MLPPProbitReg::get_lambda() {
return _lambda;
}
void MLPPProbitReg::set_lambda(const real_t val) {
_lambda = val;
_initialized = false;
}
real_t MLPPProbitReg::get_alpha() {
return _alpha;
}
void MLPPProbitReg::set_alpha(const real_t val) {
_alpha = val;
_initialized = false;
}
Ref<MLPPVector> MLPPProbitReg::model_set_test(const Ref<MLPPMatrix> &X) {
return evaluatem(X);
}
real_t MLPPProbitReg::model_test(const Ref<MLPPVector> &x) {
return evaluatev(x);
}
void MLPPProbitReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
forward_pass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
cost_prev = cost(_y_hat, _output_set);
std::vector<real_t> error = alg.subtraction(y_hat, outputSet);
Ref<MLPPVector> error = alg.subtractionnv(_y_hat, _output_set);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
forwardPass();
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n;
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
@ -62,31 +105,36 @@ void MLPPProbitReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI
}
}
void MLPPProbitReg::MLE(real_t learning_rate, int max_epoch, bool UI) {
void MLPPProbitReg::mle(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
forwardPass();
forward_pass();
while (true) {
cost_prev = Cost(y_hat, outputSet);
cost_prev = cost(_y_hat, _output_set);
std::vector<real_t> error = alg.subtraction(outputSet, y_hat);
Ref<MLPPVector> error = alg.subtractionnv(_output_set, _y_hat);
// Calculating the weight gradients
weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.additionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
forwardPass();
_bias += learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n;
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
MLPPUtilities::UI(weights, bias);
forward_pass();
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
@ -95,7 +143,9 @@ void MLPPProbitReg::MLE(real_t learning_rate, int max_epoch, bool UI) {
}
}
void MLPPProbitReg::SGD(real_t learning_rate, int max_epoch, bool UI) {
void MLPPProbitReg::sgd(real_t learning_rate, int max_epoch, bool ui) {
ERR_FAIL_COND(!_initialized);
// NOTE: ∂y_hat/∂z is sparse
MLPPActivation avn;
MLPPLinAlg alg;
@ -103,143 +153,280 @@ void MLPPProbitReg::SGD(real_t learning_rate, int max_epoch, bool UI) {
real_t cost_prev = 0;
int epoch = 1;
Ref<MLPPVector> input_set_row_tmp;
input_set_row_tmp.instance();
input_set_row_tmp->resize(_input_set->size().x);
Ref<MLPPVector> output_set_tmp;
output_set_tmp.instance();
output_set_tmp->resize(1);
Ref<MLPPVector> y_hat_tmp;
y_hat_tmp.instance();
y_hat_tmp->resize(1);
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(_n - 1));
while (true) {
std::random_device rd;
std::default_random_engine generator(rd());
std::uniform_int_distribution<int> distribution(0, int(n - 1));
int outputIndex = distribution(generator);
int output_index = distribution(generator);
real_t y_hat = Evaluate(inputSet[outputIndex]);
real_t z = propagate(inputSet[outputIndex]);
cost_prev = Cost({ y_hat }, { outputSet[outputIndex] });
_input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp);
real_t output_set_entry = _output_set->get_element(output_index);
real_t error = y_hat - outputSet[outputIndex];
real_t y_hat = evaluatev(input_set_row_tmp);
real_t z = propagatev(input_set_row_tmp);
y_hat_tmp->set_element(0, y_hat);
output_set_tmp->set_element(0, output_set_entry);
cost_prev = cost(y_hat_tmp, output_set_tmp);
real_t error = y_hat - output_set_entry;
// Weight Updation
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)), inputSet[outputIndex]));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * ((1 / Math::sqrt(2 * M_PI)) * Math::exp(-z * z / 2)), input_set_row_tmp));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Bias updation
bias -= learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2));
_bias -= learning_rate * error * ((1 / Math::sqrt(2 * M_PI)) * Math::exp(-z * z / 2));
y_hat = Evaluate({ inputSet[outputIndex] });
y_hat = evaluatev(input_set_row_tmp);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] }));
MLPPUtilities::UI(weights, bias);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_tmp));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
forward_pass();
}
void MLPPProbitReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) {
void MLPPProbitReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) {
ERR_FAIL_COND(!_initialized);
MLPPActivation avn;
MLPPLinAlg alg;
MLPPReg regularization;
real_t cost_prev = 0;
int epoch = 1;
// Creating the mini-batches
int n_mini_batch = n / mini_batch_size;
auto createMiniBatchesResult = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
auto inputMiniBatches = std::get<0>(createMiniBatchesResult);
auto outputMiniBatches = std::get<1>(createMiniBatchesResult);
Ref<MLPPVector> z_tmp;
z_tmp.instance();
z_tmp->resize(1);
// Creating the mini-batches
for (int i = 0; i < n_mini_batch; i++) {
std::vector<std::vector<real_t>> currentInputSet;
std::vector<real_t> currentOutputSet;
for (int j = 0; j < n / n_mini_batch; j++) {
currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]);
currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]);
}
inputMiniBatches.push_back(currentInputSet);
outputMiniBatches.push_back(currentOutputSet);
}
int n_mini_batch = _n / mini_batch_size;
if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) {
for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) {
inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]);
outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]);
}
}
MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch);
while (true) {
for (int i = 0; i < n_mini_batch; i++) {
std::vector<real_t> y_hat = Evaluate(inputMiniBatches[i]);
std::vector<real_t> z = propagate(inputMiniBatches[i]);
cost_prev = Cost(y_hat, outputMiniBatches[i]);
Ref<MLPPMatrix> current_input = batches.input_sets[i];
Ref<MLPPVector> current_output = batches.output_sets[i];
std::vector<real_t> error = alg.subtraction(y_hat, outputMiniBatches[i]);
Ref<MLPPVector> y_hat = evaluatem(current_input);
real_t z = propagatev(current_output);
z_tmp->set_element(0, z);
cost_prev = cost(y_hat, current_output);
Ref<MLPPVector> error = alg.subtractionnv(y_hat, current_output);
// Calculating the weight gradients
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches.size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
weights = regularization.regWeights(weights, lambda, alpha, reg);
_weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / batches.input_sets.size(), alg.mat_vec_multv(alg.transposem(current_input), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp)))));
_weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg);
// Calculating the bias gradients
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / outputMiniBatches.size();
y_hat = Evaluate(inputMiniBatches[i]);
_bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp))) / batches.input_sets.size();
y_hat = evaluatev(current_input);
if (UI) {
MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
MLPPUtilities::UI(weights, bias);
if (ui) {
MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output));
MLPPUtilities::print_ui_vb(_weights, _bias);
}
}
epoch++;
if (epoch > max_epoch) {
break;
}
}
forwardPass();
forward_pass();
}
real_t MLPPProbitReg::score() {
MLPPUtilities util;
return util.performance(y_hat, outputSet);
return util.performance_vec(_y_hat, _output_set);
}
void MLPPProbitReg::save(std::string fileName) {
void MLPPProbitReg::save(const String &file_name) {
MLPPUtilities util;
util.saveParameters(fileName, weights, bias);
//util.saveParameters(file_name, _weights, _bias);
}
real_t MLPPProbitReg::Cost(std::vector<real_t> y_hat, std::vector<real_t> y) {
bool MLPPProbitReg::is_initialized() {
return _initialized;
}
void MLPPProbitReg::initialize() {
if (_initialized) {
return;
}
ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid());
_n = _input_set->size().y;
_k = _input_set->size().x;
if (!_y_hat.is_valid()) {
_y_hat.instance();
}
_y_hat->resize(_n);
MLPPUtilities util;
if (!_weights.is_valid()) {
_weights.instance();
}
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPProbitReg::MLPPProbitReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) {
_input_set = p_input_set;
_output_set = p_output_set;
_n = _input_set->size().y;
_k = _input_set->size().x;
_reg = p_reg;
_lambda = p_lambda;
_alpha = p_alpha;
_y_hat.instance();
_y_hat->resize(_n);
MLPPUtilities util;
_weights.instance();
_weights->resize(_k);
util.weight_initializationv(_weights);
_bias = util.bias_initializationr();
_initialized = true;
}
MLPPProbitReg::MLPPProbitReg() {
_y_hat.instance();
_bias = 0;
_n = 0;
_k = 0;
// Regularization Params
_reg = MLPPReg::REGULARIZATION_TYPE_NONE;
_lambda = 0.5;
_alpha = 0.5;
_initialized = false;
}
MLPPProbitReg::~MLPPProbitReg() {
}
real_t MLPPProbitReg::cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y) {
MLPPReg regularization;
class MLPPCost cost;
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
return cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg);
}
std::vector<real_t> MLPPProbitReg::Evaluate(std::vector<std::vector<real_t>> X) {
Ref<MLPPVector> MLPPProbitReg::evaluatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
return avn.gaussian_cdf_normv(alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights)));
}
std::vector<real_t> MLPPProbitReg::propagate(std::vector<std::vector<real_t>> X) {
Ref<MLPPVector> MLPPProbitReg::propagatem(const Ref<MLPPMatrix> &X) {
MLPPLinAlg alg;
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
return alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights));
}
real_t MLPPProbitReg::Evaluate(std::vector<real_t> x) {
real_t MLPPProbitReg::evaluatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
MLPPActivation avn;
return avn.gaussianCDF(alg.dot(weights, x) + bias);
return avn.gaussian_cdf_normr(alg.dotv(_weights, x) + _bias);
}
real_t MLPPProbitReg::propagate(std::vector<real_t> x) {
real_t MLPPProbitReg::propagatev(const Ref<MLPPVector> &x) {
MLPPLinAlg alg;
return alg.dot(weights, x) + bias;
return alg.dotv(_weights, x) + _bias;
}
// gaussianCDF ( wTx + b )
void MLPPProbitReg::forwardPass() {
void MLPPProbitReg::forward_pass() {
MLPPActivation avn;
z = propagate(inputSet);
y_hat = avn.gaussianCDF(z);
_z = propagatem(_input_set);
_y_hat = avn.gaussian_cdf_normv(_z);
}
void MLPPProbitReg::_bind_methods() {
ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPProbitReg::get_input_set);
ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPProbitReg::set_input_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set");
ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPProbitReg::get_output_set);
ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPProbitReg::set_output_set);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set");
ClassDB::bind_method(D_METHOD("get_reg"), &MLPPProbitReg::get_reg);
ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPProbitReg::set_reg);
ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg");
ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPProbitReg::get_lambda);
ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPProbitReg::set_lambda);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda");
ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPProbitReg::get_alpha);
ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPProbitReg::set_alpha);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha");
ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPProbitReg::model_set_test);
ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPProbitReg::model_test);
ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::gradient_descent, 0, false);
ClassDB::bind_method(D_METHOD("mle", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::mle, 0, false);
ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::sgd, 0, false);
ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPProbitReg::mbgd, false);
ClassDB::bind_method(D_METHOD("score"), &MLPPProbitReg::score);
ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPProbitReg::save);
ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPProbitReg::is_initialized);
ClassDB::bind_method(D_METHOD("initialize"), &MLPPProbitReg::initialize);
}

View File

@ -10,44 +10,82 @@
#include "core/math/math_defs.h"
#include <string>
#include <vector>
#include "core/object/reference.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
#include "../regularization/reg.h"
class MLPPProbitReg : public Reference {
GDCLASS(MLPPProbitReg, Reference);
class MLPPProbitReg {
public:
MLPPProbitReg(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
std::vector<real_t> modelSetTest(std::vector<std::vector<real_t>> X);
real_t modelTest(std::vector<real_t> x);
void gradientDescent(real_t learning_rate, int max_epoch = 0, bool UI = false);
void MLE(real_t learning_rate, int max_epoch = 0, bool UI = false);
void SGD(real_t learning_rate, int max_epoch = 0, bool UI = false);
void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false);
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPVector> get_output_set();
void set_output_set(const Ref<MLPPVector> &val);
MLPPReg::RegularizationType get_reg();
void set_reg(const MLPPReg::RegularizationType val);
real_t get_lambda();
void set_lambda(const real_t val);
real_t get_alpha();
void set_alpha(const real_t val);
Ref<MLPPVector> model_set_test(const Ref<MLPPMatrix> &X);
real_t model_test(const Ref<MLPPVector> &x);
void gradient_descent(real_t learning_rate, int max_epoch = 0, bool ui = false);
void mle(real_t learning_rate, int max_epoch = 0, bool ui = false);
void sgd(real_t learning_rate, int max_epoch = 0, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
real_t score();
void save(std::string fileName);
private:
real_t Cost(std::vector<real_t> y_hat, std::vector<real_t> y);
void save(const String &file_name);
std::vector<real_t> Evaluate(std::vector<std::vector<real_t>> X);
std::vector<real_t> propagate(std::vector<std::vector<real_t>> X);
real_t Evaluate(std::vector<real_t> x);
real_t propagate(std::vector<real_t> x);
void forwardPass();
bool is_initialized();
void initialize();
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> z;
std::vector<real_t> y_hat;
std::vector<real_t> weights;
real_t bias;
MLPPProbitReg(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPVector> &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5);
int n;
int k;
MLPPProbitReg();
~MLPPProbitReg();
protected:
real_t cost(const Ref<MLPPVector> &y_hat, const Ref<MLPPVector> &y);
Ref<MLPPVector> evaluatem(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> propagatem(const Ref<MLPPMatrix> &X);
real_t evaluatev(const Ref<MLPPVector> &x);
real_t propagatev(const Ref<MLPPVector> &x);
void forward_pass();
static void _bind_methods();
Ref<MLPPMatrix> _input_set;
Ref<MLPPVector> _output_set;
Ref<MLPPVector> _z;
Ref<MLPPVector> _y_hat;
Ref<MLPPVector> _weights;
real_t _bias;
int _n;
int _k;
// Regularization Params
std::string reg;
real_t lambda;
real_t alpha; /* This is the controlling param for Elastic Net*/
MLPPReg::RegularizationType _reg;
real_t _lambda;
real_t _alpha; /* This is the controlling param for Elastic Net*/
bool _initialized;
};
#endif /* ProbitReg_hpp */

View File

@ -42,6 +42,7 @@ SOFTWARE.
#include "mlpp/pca/pca.h"
#include "mlpp/uni_lin_reg/uni_lin_reg.h"
#include "mlpp/wgan/wgan.h"
#include "mlpp/probit_reg/probit_reg.h"
#include "mlpp/mlp/mlp.h"
@ -69,6 +70,7 @@ void register_pmlpp_types(ModuleRegistrationLevel p_level) {
ClassDB::register_class<MLPPPCA>();
ClassDB::register_class<MLPPUniLinReg>();
ClassDB::register_class<MLPPOutlierFinder>();
ClassDB::register_class<MLPPProbitReg>();
ClassDB::register_class<MLPPDataESimple>();
ClassDB::register_class<MLPPDataSimple>();

View File

@ -50,9 +50,9 @@
#include "../mlpp/mlp/mlp_old.h"
#include "../mlpp/outlier_finder/outlier_finder_old.h"
#include "../mlpp/pca/pca_old.h"
#include "../mlpp/probit_reg/probit_reg_old.h"
#include "../mlpp/uni_lin_reg/uni_lin_reg_old.h"
#include "../mlpp/wgan/wgan_old.h"
#include "../mlpp/probit_reg/probit_reg_old.h"
Vector<real_t> dstd_vec_to_vec(const std::vector<real_t> &in) {
Vector<real_t> r;
@ -353,6 +353,11 @@ void MLPPTests::test_probit_regression(bool ui) {
model_old.SGD(0.001, 10000, ui);
alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector()));
std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl;
MLPPProbitReg model(dt->get_input(), dt->get_output());
model.sgd(0.001, 10000, ui);
PLOG_MSG(model.model_set_test(dt->get_input())->to_string());
PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%");
}
void MLPPTests::test_c_log_log_regression(bool ui) {
MLPPLinAlg alg;