diff --git a/mlpp/probit_reg/probit_reg.cpp b/mlpp/probit_reg/probit_reg.cpp index 310a278..ff35461 100644 --- a/mlpp/probit_reg/probit_reg.cpp +++ b/mlpp/probit_reg/probit_reg.cpp @@ -5,55 +5,98 @@ // #include "probit_reg.h" + #include "../activation/activation.h" #include "../cost/cost.h" #include "../lin_alg/lin_alg.h" #include "../regularization/reg.h" #include "../utilities/utilities.h" -#include #include -MLPPProbitReg::MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg, real_t lambda, real_t alpha) : - inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha) { - y_hat.resize(n); - weights = MLPPUtilities::weightInitialization(k); - bias = MLPPUtilities::biasInitialization(); +Ref MLPPProbitReg::get_input_set() { + return _input_set; +} +void MLPPProbitReg::set_input_set(const Ref &val) { + _input_set = val; + + _initialized = false; } -std::vector MLPPProbitReg::modelSetTest(std::vector> X) { - return Evaluate(X); +Ref MLPPProbitReg::get_output_set() { + return _output_set; +} +void MLPPProbitReg::set_output_set(const Ref &val) { + _output_set = val; + + _initialized = false; } -real_t MLPPProbitReg::modelTest(std::vector x) { - return Evaluate(x); +MLPPReg::RegularizationType MLPPProbitReg::get_reg() { + return _reg; +} +void MLPPProbitReg::set_reg(const MLPPReg::RegularizationType val) { + _reg = val; + + _initialized = false; } -void MLPPProbitReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI) { +real_t MLPPProbitReg::get_lambda() { + return _lambda; +} +void MLPPProbitReg::set_lambda(const real_t val) { + _lambda = val; + + _initialized = false; +} + +real_t MLPPProbitReg::get_alpha() { + return _alpha; +} +void MLPPProbitReg::set_alpha(const real_t val) { + _alpha = val; + + _initialized = false; +} + +Ref MLPPProbitReg::model_set_test(const Ref &X) { + return evaluatem(X); +} + +real_t MLPPProbitReg::model_test(const Ref &x) { + return evaluatev(x); +} + +void MLPPProbitReg::gradient_descent(real_t learning_rate, int max_epoch, bool ui) { + ERR_FAIL_COND(!_initialized); + MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; - forwardPass(); + + forward_pass(); while (true) { - cost_prev = Cost(y_hat, outputSet); + cost_prev = cost(_y_hat, _output_set); - std::vector error = alg.subtraction(y_hat, outputSet); + Ref error = alg.subtractionnv(_y_hat, _output_set); // Calculating the weight gradients - weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); - weights = regularization.regWeights(weights, lambda, alpha, reg); + _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))))); + _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients - bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n; - forwardPass(); + _bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n; - if (UI) { - MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); - MLPPUtilities::UI(weights, bias); + forward_pass(); + + if (ui) { + MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); + MLPPUtilities::print_ui_vb(_weights, _bias); } + epoch++; if (epoch > max_epoch) { @@ -62,31 +105,36 @@ void MLPPProbitReg::gradientDescent(real_t learning_rate, int max_epoch, bool UI } } -void MLPPProbitReg::MLE(real_t learning_rate, int max_epoch, bool UI) { +void MLPPProbitReg::mle(real_t learning_rate, int max_epoch, bool ui) { + ERR_FAIL_COND(!_initialized); + MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; - forwardPass(); + + forward_pass(); while (true) { - cost_prev = Cost(y_hat, outputSet); + cost_prev = cost(_y_hat, _output_set); - std::vector error = alg.subtraction(outputSet, y_hat); + Ref error = alg.subtractionnv(_output_set, _y_hat); // Calculating the weight gradients - weights = alg.addition(weights, alg.scalarMultiply(learning_rate / n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); - weights = regularization.regWeights(weights, lambda, alpha, reg); + _weights = alg.additionnv(_weights, alg.scalar_multiplynv(learning_rate / _n, alg.mat_vec_multv(alg.transposem(_input_set), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))))); + _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients - bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n; - forwardPass(); + _bias += learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(_z))) / _n; - if (UI) { - MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet)); - MLPPUtilities::UI(weights, bias); + forward_pass(); + + if (ui) { + MLPPUtilities::cost_info(epoch, cost_prev, cost(_y_hat, _output_set)); + MLPPUtilities::print_ui_vb(_weights, _bias); } + epoch++; if (epoch > max_epoch) { @@ -95,7 +143,9 @@ void MLPPProbitReg::MLE(real_t learning_rate, int max_epoch, bool UI) { } } -void MLPPProbitReg::SGD(real_t learning_rate, int max_epoch, bool UI) { +void MLPPProbitReg::sgd(real_t learning_rate, int max_epoch, bool ui) { + ERR_FAIL_COND(!_initialized); + // NOTE: ∂y_hat/∂z is sparse MLPPActivation avn; MLPPLinAlg alg; @@ -103,143 +153,280 @@ void MLPPProbitReg::SGD(real_t learning_rate, int max_epoch, bool UI) { real_t cost_prev = 0; int epoch = 1; + Ref input_set_row_tmp; + input_set_row_tmp.instance(); + input_set_row_tmp->resize(_input_set->size().x); + + Ref output_set_tmp; + output_set_tmp.instance(); + output_set_tmp->resize(1); + + Ref y_hat_tmp; + y_hat_tmp.instance(); + y_hat_tmp->resize(1); + + std::random_device rd; + std::default_random_engine generator(rd()); + std::uniform_int_distribution distribution(0, int(_n - 1)); + while (true) { - std::random_device rd; - std::default_random_engine generator(rd()); - std::uniform_int_distribution distribution(0, int(n - 1)); - int outputIndex = distribution(generator); + int output_index = distribution(generator); - real_t y_hat = Evaluate(inputSet[outputIndex]); - real_t z = propagate(inputSet[outputIndex]); - cost_prev = Cost({ y_hat }, { outputSet[outputIndex] }); + _input_set->get_row_into_mlpp_vector(output_index, input_set_row_tmp); + real_t output_set_entry = _output_set->get_element(output_index); - real_t error = y_hat - outputSet[outputIndex]; + real_t y_hat = evaluatev(input_set_row_tmp); + real_t z = propagatev(input_set_row_tmp); + + y_hat_tmp->set_element(0, y_hat); + output_set_tmp->set_element(0, output_set_entry); + + cost_prev = cost(y_hat_tmp, output_set_tmp); + + real_t error = y_hat - output_set_entry; // Weight Updation - weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)), inputSet[outputIndex])); - weights = regularization.regWeights(weights, lambda, alpha, reg); + _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate * error * ((1 / Math::sqrt(2 * M_PI)) * Math::exp(-z * z / 2)), input_set_row_tmp)); + _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Bias updation - bias -= learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)); + _bias -= learning_rate * error * ((1 / Math::sqrt(2 * M_PI)) * Math::exp(-z * z / 2)); - y_hat = Evaluate({ inputSet[outputIndex] }); + y_hat = evaluatev(input_set_row_tmp); - if (UI) { - MLPPUtilities::CostInfo(epoch, cost_prev, Cost({ y_hat }, { outputSet[outputIndex] })); - MLPPUtilities::UI(weights, bias); + if (ui) { + MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat_tmp, output_set_tmp)); + MLPPUtilities::print_ui_vb(_weights, _bias); } + epoch++; if (epoch > max_epoch) { break; } } - forwardPass(); + + forward_pass(); } -void MLPPProbitReg::MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI) { +void MLPPProbitReg::mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui) { + ERR_FAIL_COND(!_initialized); + MLPPActivation avn; MLPPLinAlg alg; MLPPReg regularization; real_t cost_prev = 0; int epoch = 1; - // Creating the mini-batches - int n_mini_batch = n / mini_batch_size; - auto createMiniBatchesResult = MLPPUtilities::createMiniBatches(inputSet, outputSet, n_mini_batch); - auto inputMiniBatches = std::get<0>(createMiniBatchesResult); - auto outputMiniBatches = std::get<1>(createMiniBatchesResult); + Ref z_tmp; + z_tmp.instance(); + z_tmp->resize(1); // Creating the mini-batches - for (int i = 0; i < n_mini_batch; i++) { - std::vector> currentInputSet; - std::vector currentOutputSet; - for (int j = 0; j < n / n_mini_batch; j++) { - currentInputSet.push_back(inputSet[n / n_mini_batch * i + j]); - currentOutputSet.push_back(outputSet[n / n_mini_batch * i + j]); - } - inputMiniBatches.push_back(currentInputSet); - outputMiniBatches.push_back(currentOutputSet); - } + int n_mini_batch = _n / mini_batch_size; - if (real_t(n) / real_t(n_mini_batch) - int(n / n_mini_batch) != 0) { - for (int i = 0; i < n - n / n_mini_batch * n_mini_batch; i++) { - inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n / n_mini_batch * n_mini_batch + i]); - outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n / n_mini_batch * n_mini_batch + i]); - } - } + MLPPUtilities::CreateMiniBatchMVBatch batches = MLPPUtilities::create_mini_batchesmv(_input_set, _output_set, n_mini_batch); while (true) { for (int i = 0; i < n_mini_batch; i++) { - std::vector y_hat = Evaluate(inputMiniBatches[i]); - std::vector z = propagate(inputMiniBatches[i]); - cost_prev = Cost(y_hat, outputMiniBatches[i]); + Ref current_input = batches.input_sets[i]; + Ref current_output = batches.output_sets[i]; - std::vector error = alg.subtraction(y_hat, outputMiniBatches[i]); + Ref y_hat = evaluatem(current_input); + real_t z = propagatev(current_output); + + z_tmp->set_element(0, z); + + cost_prev = cost(y_hat, current_output); + + Ref error = alg.subtractionnv(y_hat, current_output); // Calculating the weight gradients - weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate / outputMiniBatches.size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.gaussianCDF(z, 1))))); - weights = regularization.regWeights(weights, lambda, alpha, reg); + _weights = alg.subtractionnv(_weights, alg.scalar_multiplynv(learning_rate / batches.input_sets.size(), alg.mat_vec_multv(alg.transposem(current_input), alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp))))); + _weights = regularization.reg_weightsv(_weights, _lambda, _alpha, _reg); // Calculating the bias gradients - bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / outputMiniBatches.size(); - y_hat = Evaluate(inputMiniBatches[i]); + _bias -= learning_rate * alg.sum_elementsv(alg.hadamard_productnv(error, avn.gaussian_cdf_derivv(z_tmp))) / batches.input_sets.size(); + y_hat = evaluatev(current_input); - if (UI) { - MLPPUtilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i])); - MLPPUtilities::UI(weights, bias); + if (ui) { + MLPPUtilities::cost_info(epoch, cost_prev, cost(y_hat, current_output)); + MLPPUtilities::print_ui_vb(_weights, _bias); } } + epoch++; + if (epoch > max_epoch) { break; } } - forwardPass(); + + forward_pass(); } real_t MLPPProbitReg::score() { MLPPUtilities util; - return util.performance(y_hat, outputSet); + + return util.performance_vec(_y_hat, _output_set); } -void MLPPProbitReg::save(std::string fileName) { +void MLPPProbitReg::save(const String &file_name) { MLPPUtilities util; - util.saveParameters(fileName, weights, bias); + + //util.saveParameters(file_name, _weights, _bias); } -real_t MLPPProbitReg::Cost(std::vector y_hat, std::vector y) { +bool MLPPProbitReg::is_initialized() { + return _initialized; +} +void MLPPProbitReg::initialize() { + if (_initialized) { + return; + } + + ERR_FAIL_COND(!_input_set.is_valid() || !_output_set.is_valid()); + + _n = _input_set->size().y; + _k = _input_set->size().x; + + if (!_y_hat.is_valid()) { + _y_hat.instance(); + } + + _y_hat->resize(_n); + + MLPPUtilities util; + + if (!_weights.is_valid()) { + _weights.instance(); + } + + _weights->resize(_k); + + util.weight_initializationv(_weights); + _bias = util.bias_initializationr(); + + _initialized = true; +} + +MLPPProbitReg::MLPPProbitReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg, real_t p_lambda, real_t p_alpha) { + _input_set = p_input_set; + _output_set = p_output_set; + + _n = _input_set->size().y; + _k = _input_set->size().x; + + _reg = p_reg; + _lambda = p_lambda; + _alpha = p_alpha; + + _y_hat.instance(); + _y_hat->resize(_n); + + MLPPUtilities util; + + _weights.instance(); + _weights->resize(_k); + + util.weight_initializationv(_weights); + _bias = util.bias_initializationr(); + + _initialized = true; +} + +MLPPProbitReg::MLPPProbitReg() { + _y_hat.instance(); + + _bias = 0; + + _n = 0; + _k = 0; + + // Regularization Params + _reg = MLPPReg::REGULARIZATION_TYPE_NONE; + _lambda = 0.5; + _alpha = 0.5; + + _initialized = false; +} +MLPPProbitReg::~MLPPProbitReg() { +} + +real_t MLPPProbitReg::cost(const Ref &y_hat, const Ref &y) { MLPPReg regularization; class MLPPCost cost; - return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg); + + return cost.msev(y_hat, y) + regularization.reg_termv(_weights, _lambda, _alpha, _reg); } -std::vector MLPPProbitReg::Evaluate(std::vector> X) { +Ref MLPPProbitReg::evaluatem(const Ref &X) { MLPPLinAlg alg; MLPPActivation avn; - return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights))); + + return avn.gaussian_cdf_normv(alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights))); } -std::vector MLPPProbitReg::propagate(std::vector> X) { +Ref MLPPProbitReg::propagatem(const Ref &X) { MLPPLinAlg alg; - return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)); + + return alg.scalar_addnv(_bias, alg.mat_vec_multv(X, _weights)); } -real_t MLPPProbitReg::Evaluate(std::vector x) { +real_t MLPPProbitReg::evaluatev(const Ref &x) { MLPPLinAlg alg; MLPPActivation avn; - return avn.gaussianCDF(alg.dot(weights, x) + bias); + + return avn.gaussian_cdf_normr(alg.dotv(_weights, x) + _bias); } -real_t MLPPProbitReg::propagate(std::vector x) { +real_t MLPPProbitReg::propagatev(const Ref &x) { MLPPLinAlg alg; - return alg.dot(weights, x) + bias; + + return alg.dotv(_weights, x) + _bias; } // gaussianCDF ( wTx + b ) -void MLPPProbitReg::forwardPass() { +void MLPPProbitReg::forward_pass() { MLPPActivation avn; - z = propagate(inputSet); - y_hat = avn.gaussianCDF(z); + _z = propagatem(_input_set); + _y_hat = avn.gaussian_cdf_normv(_z); +} + +void MLPPProbitReg::_bind_methods() { + ClassDB::bind_method(D_METHOD("get_input_set"), &MLPPProbitReg::get_input_set); + ClassDB::bind_method(D_METHOD("set_input_set", "val"), &MLPPProbitReg::set_input_set); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "input_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPMatrix"), "set_input_set", "get_input_set"); + + ClassDB::bind_method(D_METHOD("get_output_set"), &MLPPProbitReg::get_output_set); + ClassDB::bind_method(D_METHOD("set_output_set", "val"), &MLPPProbitReg::set_output_set); + ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "output_set", PROPERTY_HINT_RESOURCE_TYPE, "MLPPVector"), "set_output_set", "get_output_set"); + + ClassDB::bind_method(D_METHOD("get_reg"), &MLPPProbitReg::get_reg); + ClassDB::bind_method(D_METHOD("set_reg", "val"), &MLPPProbitReg::set_reg); + ADD_PROPERTY(PropertyInfo(Variant::INT, "reg"), "set_reg", "get_reg"); + + ClassDB::bind_method(D_METHOD("get_lambda"), &MLPPProbitReg::get_lambda); + ClassDB::bind_method(D_METHOD("set_lambda", "val"), &MLPPProbitReg::set_lambda); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "lambda"), "set_lambda", "get_lambda"); + + ClassDB::bind_method(D_METHOD("get_alpha"), &MLPPProbitReg::get_alpha); + ClassDB::bind_method(D_METHOD("set_alpha", "val"), &MLPPProbitReg::set_alpha); + ADD_PROPERTY(PropertyInfo(Variant::REAL, "alpha"), "set_alpha", "get_alpha"); + + ClassDB::bind_method(D_METHOD("model_set_test", "X"), &MLPPProbitReg::model_set_test); + ClassDB::bind_method(D_METHOD("model_test", "x"), &MLPPProbitReg::model_test); + + ClassDB::bind_method(D_METHOD("gradient_descent", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::gradient_descent, 0, false); + ClassDB::bind_method(D_METHOD("mle", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::mle, 0, false); + ClassDB::bind_method(D_METHOD("sgd", "learning_rate", "max_epoch", "ui"), &MLPPProbitReg::sgd, 0, false); + ClassDB::bind_method(D_METHOD("mbgd", "learning_rate", "max_epoch", "mini_batch_size", "ui"), &MLPPProbitReg::mbgd, false); + + ClassDB::bind_method(D_METHOD("score"), &MLPPProbitReg::score); + + ClassDB::bind_method(D_METHOD("save", "file_name"), &MLPPProbitReg::save); + + ClassDB::bind_method(D_METHOD("is_initialized"), &MLPPProbitReg::is_initialized); + ClassDB::bind_method(D_METHOD("initialize"), &MLPPProbitReg::initialize); } diff --git a/mlpp/probit_reg/probit_reg.h b/mlpp/probit_reg/probit_reg.h index db92cb9..a0aa2da 100644 --- a/mlpp/probit_reg/probit_reg.h +++ b/mlpp/probit_reg/probit_reg.h @@ -10,44 +10,82 @@ #include "core/math/math_defs.h" -#include -#include +#include "core/object/reference.h" + +#include "../lin_alg/mlpp_matrix.h" +#include "../lin_alg/mlpp_vector.h" + +#include "../regularization/reg.h" + +class MLPPProbitReg : public Reference { + GDCLASS(MLPPProbitReg, Reference); -class MLPPProbitReg { public: - MLPPProbitReg(std::vector> inputSet, std::vector outputSet, std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5); - std::vector modelSetTest(std::vector> X); - real_t modelTest(std::vector x); - void gradientDescent(real_t learning_rate, int max_epoch = 0, bool UI = false); - void MLE(real_t learning_rate, int max_epoch = 0, bool UI = false); - void SGD(real_t learning_rate, int max_epoch = 0, bool UI = false); - void MBGD(real_t learning_rate, int max_epoch, int mini_batch_size, bool UI = false); + Ref get_input_set(); + void set_input_set(const Ref &val); + + Ref get_output_set(); + void set_output_set(const Ref &val); + + MLPPReg::RegularizationType get_reg(); + void set_reg(const MLPPReg::RegularizationType val); + + real_t get_lambda(); + void set_lambda(const real_t val); + + real_t get_alpha(); + void set_alpha(const real_t val); + + Ref model_set_test(const Ref &X); + real_t model_test(const Ref &x); + + void gradient_descent(real_t learning_rate, int max_epoch = 0, bool ui = false); + void mle(real_t learning_rate, int max_epoch = 0, bool ui = false); + void sgd(real_t learning_rate, int max_epoch = 0, bool ui = false); + void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false); + real_t score(); - void save(std::string fileName); -private: - real_t Cost(std::vector y_hat, std::vector y); + void save(const String &file_name); - std::vector Evaluate(std::vector> X); - std::vector propagate(std::vector> X); - real_t Evaluate(std::vector x); - real_t propagate(std::vector x); - void forwardPass(); + bool is_initialized(); + void initialize(); - std::vector> inputSet; - std::vector outputSet; - std::vector z; - std::vector y_hat; - std::vector weights; - real_t bias; + MLPPProbitReg(const Ref &p_input_set, const Ref &p_output_set, MLPPReg::RegularizationType p_reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t p_lambda = 0.5, real_t p_alpha = 0.5); - int n; - int k; + MLPPProbitReg(); + ~MLPPProbitReg(); + +protected: + real_t cost(const Ref &y_hat, const Ref &y); + + Ref evaluatem(const Ref &X); + Ref propagatem(const Ref &X); + + real_t evaluatev(const Ref &x); + real_t propagatev(const Ref &x); + + void forward_pass(); + + static void _bind_methods(); + + Ref _input_set; + Ref _output_set; + + Ref _z; + Ref _y_hat; + Ref _weights; + real_t _bias; + + int _n; + int _k; // Regularization Params - std::string reg; - real_t lambda; - real_t alpha; /* This is the controlling param for Elastic Net*/ + MLPPReg::RegularizationType _reg; + real_t _lambda; + real_t _alpha; /* This is the controlling param for Elastic Net*/ + + bool _initialized; }; #endif /* ProbitReg_hpp */ diff --git a/register_types.cpp b/register_types.cpp index 2e94a71..222e6a6 100644 --- a/register_types.cpp +++ b/register_types.cpp @@ -42,6 +42,7 @@ SOFTWARE. #include "mlpp/pca/pca.h" #include "mlpp/uni_lin_reg/uni_lin_reg.h" #include "mlpp/wgan/wgan.h" +#include "mlpp/probit_reg/probit_reg.h" #include "mlpp/mlp/mlp.h" @@ -69,6 +70,7 @@ void register_pmlpp_types(ModuleRegistrationLevel p_level) { ClassDB::register_class(); ClassDB::register_class(); ClassDB::register_class(); + ClassDB::register_class(); ClassDB::register_class(); ClassDB::register_class(); diff --git a/test/mlpp_tests.cpp b/test/mlpp_tests.cpp index 9a9b099..8244578 100644 --- a/test/mlpp_tests.cpp +++ b/test/mlpp_tests.cpp @@ -50,9 +50,9 @@ #include "../mlpp/mlp/mlp_old.h" #include "../mlpp/outlier_finder/outlier_finder_old.h" #include "../mlpp/pca/pca_old.h" +#include "../mlpp/probit_reg/probit_reg_old.h" #include "../mlpp/uni_lin_reg/uni_lin_reg_old.h" #include "../mlpp/wgan/wgan_old.h" -#include "../mlpp/probit_reg/probit_reg_old.h" Vector dstd_vec_to_vec(const std::vector &in) { Vector r; @@ -353,6 +353,11 @@ void MLPPTests::test_probit_regression(bool ui) { model_old.SGD(0.001, 10000, ui); alg.printVector(model_old.modelSetTest(dt->get_input()->to_std_vector())); std::cout << "ACCURACY: " << 100 * model_old.score() << "%" << std::endl; + + MLPPProbitReg model(dt->get_input(), dt->get_output()); + model.sgd(0.001, 10000, ui); + PLOG_MSG(model.model_set_test(dt->get_input())->to_string()); + PLOG_MSG("ACCURACY: " + String::num(100 * model.score()) + "%"); } void MLPPTests::test_c_log_log_regression(bool ui) { MLPPLinAlg alg;