pmlpp/mlpp/output_layer/output_layer.cpp

129 lines
4.3 KiB
C++
Raw Normal View History

//
// OutputLayer.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-24 18:12:23 +01:00
#include "output_layer.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
namespace MLPP {
2023-01-24 19:00:54 +01:00
OutputLayer::OutputLayer(int n_hidden, std::string activation, std::string cost, std::vector<std::vector<double>> input, std::string weightInit, std::string reg, double lambda, double alpha) :
n_hidden(n_hidden), activation(activation), cost(cost), input(input), weightInit(weightInit), reg(reg), lambda(lambda), alpha(alpha) {
weights = Utilities::weightInitialization(n_hidden, weightInit);
bias = Utilities::biasInitialization();
2023-01-24 19:00:54 +01:00
activation_map["Linear"] = &Activation::linear;
activationTest_map["Linear"] = &Activation::linear;
2023-01-24 19:00:54 +01:00
activation_map["Sigmoid"] = &Activation::sigmoid;
activationTest_map["Sigmoid"] = &Activation::sigmoid;
2023-01-24 19:00:54 +01:00
activation_map["Swish"] = &Activation::swish;
activationTest_map["Swish"] = &Activation::swish;
2023-01-24 19:00:54 +01:00
activation_map["Mish"] = &Activation::mish;
activationTest_map["Mish"] = &Activation::mish;
2023-01-24 19:00:54 +01:00
activation_map["SinC"] = &Activation::sinc;
activationTest_map["SinC"] = &Activation::sinc;
activation_map["Softplus"] = &Activation::softplus;
activationTest_map["Softplus"] = &Activation::softplus;
activation_map["Softsign"] = &Activation::softsign;
activationTest_map["Softsign"] = &Activation::softsign;
activation_map["CLogLog"] = &Activation::cloglog;
activationTest_map["CLogLog"] = &Activation::cloglog;
activation_map["Logit"] = &Activation::logit;
activationTest_map["Logit"] = &Activation::logit;
activation_map["GaussianCDF"] = &Activation::gaussianCDF;
activationTest_map["GaussianCDF"] = &Activation::gaussianCDF;
activation_map["RELU"] = &Activation::RELU;
activationTest_map["RELU"] = &Activation::RELU;
activation_map["GELU"] = &Activation::GELU;
activationTest_map["GELU"] = &Activation::GELU;
activation_map["Sign"] = &Activation::sign;
activationTest_map["Sign"] = &Activation::sign;
activation_map["UnitStep"] = &Activation::unitStep;
activationTest_map["UnitStep"] = &Activation::unitStep;
activation_map["Sinh"] = &Activation::sinh;
activationTest_map["Sinh"] = &Activation::sinh;
activation_map["Cosh"] = &Activation::cosh;
activationTest_map["Cosh"] = &Activation::cosh;
activation_map["Tanh"] = &Activation::tanh;
activationTest_map["Tanh"] = &Activation::tanh;
activation_map["Csch"] = &Activation::csch;
activationTest_map["Csch"] = &Activation::csch;
activation_map["Sech"] = &Activation::sech;
activationTest_map["Sech"] = &Activation::sech;
activation_map["Coth"] = &Activation::coth;
activationTest_map["Coth"] = &Activation::coth;
activation_map["Arsinh"] = &Activation::arsinh;
activationTest_map["Arsinh"] = &Activation::arsinh;
activation_map["Arcosh"] = &Activation::arcosh;
activationTest_map["Arcosh"] = &Activation::arcosh;
activation_map["Artanh"] = &Activation::artanh;
activationTest_map["Artanh"] = &Activation::artanh;
activation_map["Arcsch"] = &Activation::arcsch;
activationTest_map["Arcsch"] = &Activation::arcsch;
activation_map["Arsech"] = &Activation::arsech;
activationTest_map["Arsech"] = &Activation::arsech;
activation_map["Arcoth"] = &Activation::arcoth;
activationTest_map["Arcoth"] = &Activation::arcoth;
costDeriv_map["MSE"] = &Cost::MSEDeriv;
cost_map["MSE"] = &Cost::MSE;
costDeriv_map["RMSE"] = &Cost::RMSEDeriv;
cost_map["RMSE"] = &Cost::RMSE;
costDeriv_map["MAE"] = &Cost::MAEDeriv;
cost_map["MAE"] = &Cost::MAE;
costDeriv_map["MBE"] = &Cost::MBEDeriv;
cost_map["MBE"] = &Cost::MBE;
costDeriv_map["LogLoss"] = &Cost::LogLossDeriv;
cost_map["LogLoss"] = &Cost::LogLoss;
costDeriv_map["CrossEntropy"] = &Cost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &Cost::CrossEntropy;
costDeriv_map["HingeLoss"] = &Cost::HingeLossDeriv;
cost_map["HingeLoss"] = &Cost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &Cost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &Cost::HingeLoss;
}
void OutputLayer::forwardPass() {
LinAlg alg;
Activation avn;
z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights));
a = (avn.*activation_map[activation])(z, 0);
}
void OutputLayer::Test(std::vector<double> x) {
LinAlg alg;
Activation avn;
z_test = alg.dot(weights, x) + bias;
a_test = (avn.*activationTest_map[activation])(z_test, 0);
}
} //namespace MLPP