2023-01-24 18:57:18 +01:00
|
|
|
#ifndef MLPP_ANN_H
|
|
|
|
#define MLPP_ANN_H
|
|
|
|
|
2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// ANN.hpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 11/4/20.
|
|
|
|
//
|
|
|
|
|
2023-01-24 19:14:38 +01:00
|
|
|
#include "../hidden_layer/hidden_layer.h"
|
|
|
|
#include "../output_layer/output_layer.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#include <string>
|
2023-01-24 19:00:54 +01:00
|
|
|
#include <tuple>
|
|
|
|
#include <vector>
|
2023-01-23 21:13:26 +01:00
|
|
|
|
2023-01-24 19:00:54 +01:00
|
|
|
namespace MLPP {
|
|
|
|
|
|
|
|
class ANN {
|
|
|
|
public:
|
|
|
|
ANN(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet);
|
|
|
|
~ANN();
|
|
|
|
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
|
|
|
|
double modelTest(std::vector<double> x);
|
|
|
|
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
void SGD(double learning_rate, int max_epoch, bool UI = 1);
|
|
|
|
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
|
|
|
void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI = 1);
|
|
|
|
void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1);
|
|
|
|
void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1);
|
|
|
|
void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
|
|
void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
|
|
void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
|
|
void AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1);
|
|
|
|
double score();
|
|
|
|
void save(std::string fileName);
|
|
|
|
|
|
|
|
void setLearningRateScheduler(std::string type, double decayConstant);
|
|
|
|
void setLearningRateScheduler(std::string type, double decayConstant, double dropRate);
|
|
|
|
|
|
|
|
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
|
|
|
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
|
|
|
|
|
|
|
|
private:
|
|
|
|
double applyLearningRateScheduler(double learningRate, double decayConstant, double epoch, double dropRate);
|
|
|
|
|
|
|
|
double Cost(std::vector<double> y_hat, std::vector<double> y);
|
|
|
|
|
|
|
|
void forwardPass();
|
|
|
|
void updateParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, std::vector<double> outputLayerUpdation, double learning_rate);
|
|
|
|
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> computeGradients(std::vector<double> y_hat, std::vector<double> outputSet);
|
|
|
|
|
|
|
|
void UI(int epoch, double cost_prev, std::vector<double> y_hat, std::vector<double> outputSet);
|
|
|
|
|
|
|
|
std::vector<std::vector<double>> inputSet;
|
|
|
|
std::vector<double> outputSet;
|
|
|
|
std::vector<double> y_hat;
|
|
|
|
|
|
|
|
std::vector<HiddenLayer> network;
|
|
|
|
OutputLayer *outputLayer;
|
|
|
|
|
|
|
|
int n;
|
|
|
|
int k;
|
|
|
|
|
|
|
|
std::string lrScheduler;
|
|
|
|
double decayConstant;
|
|
|
|
double dropRate;
|
|
|
|
};
|
|
|
|
} //namespace MLPP
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#endif /* ANN_hpp */
|