#ifndef MLPP_ANN_H #define MLPP_ANN_H // // ANN.hpp // // Created by Marc Melikyan on 11/4/20. // #include "../hidden_layer/hidden_layer.h" #include "../output_layer/output_layer.h" #include #include #include namespace MLPP { class ANN { public: ANN(std::vector> inputSet, std::vector outputSet); ~ANN(); std::vector modelSetTest(std::vector> X); double modelTest(std::vector x); void gradientDescent(double learning_rate, int max_epoch, bool UI = 1); void SGD(double learning_rate, int max_epoch, bool UI = 1); void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1); void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI = 1); void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1); void Adadelta(double learning_rate, int max_epoch, int mini_batch_size, double b1, double e, bool UI = 1); void Adam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); void Adamax(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); void Nadam(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); void AMSGrad(double learning_rate, int max_epoch, int mini_batch_size, double b1, double b2, double e, bool UI = 1); double score(); void save(std::string fileName); void setLearningRateScheduler(std::string type, double decayConstant); void setLearningRateScheduler(std::string type, double decayConstant, double dropRate); void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5); private: double applyLearningRateScheduler(double learningRate, double decayConstant, double epoch, double dropRate); double Cost(std::vector y_hat, std::vector y); void forwardPass(); void updateParameters(std::vector>> hiddenLayerUpdations, std::vector outputLayerUpdation, double learning_rate); std::tuple>>, std::vector> computeGradients(std::vector y_hat, std::vector outputSet); void UI(int epoch, double cost_prev, std::vector y_hat, std::vector outputSet); std::vector> inputSet; std::vector outputSet; std::vector y_hat; std::vector network; OutputLayer *outputLayer; int n; int k; std::string lrScheduler; double decayConstant; double dropRate; }; } //namespace MLPP #endif /* ANN_hpp */