2023-02-11 00:46:43 +01:00
|
|
|
//
|
|
|
|
// MultinomialNB.cpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 1/17/21.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "multinomial_nb_old.h"
|
|
|
|
|
2023-04-22 17:17:58 +02:00
|
|
|
#include "../lin_alg/lin_alg_old.h"
|
2023-02-11 00:46:43 +01:00
|
|
|
#include "../utilities/utilities.h"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
|
|
|
|
|
|
MLPPMultinomialNBOld::MLPPMultinomialNBOld(std::vector<std::vector<real_t>> pinputSet, std::vector<real_t> poutputSet, int pclass_num) {
|
|
|
|
inputSet = pinputSet;
|
|
|
|
outputSet = poutputSet;
|
|
|
|
class_num = pclass_num;
|
|
|
|
|
|
|
|
y_hat.resize(outputSet.size());
|
|
|
|
Evaluate();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<real_t> MLPPMultinomialNBOld::modelSetTest(std::vector<std::vector<real_t>> X) {
|
|
|
|
std::vector<real_t> y_hat;
|
|
|
|
for (uint32_t i = 0; i < X.size(); i++) {
|
|
|
|
y_hat.push_back(modelTest(X[i]));
|
|
|
|
}
|
|
|
|
return y_hat;
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPMultinomialNBOld::modelTest(std::vector<real_t> x) {
|
|
|
|
real_t score[class_num];
|
|
|
|
computeTheta();
|
|
|
|
|
|
|
|
for (uint32_t j = 0; j < x.size(); j++) {
|
|
|
|
for (uint32_t k = 0; k < vocab.size(); k++) {
|
|
|
|
if (x[j] == vocab[k]) {
|
|
|
|
for (int p = class_num - 1; p >= 0; p--) {
|
|
|
|
score[p] += std::log(theta[p][vocab[k]]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < priors.size(); i++) {
|
|
|
|
score[i] += std::log(priors[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t MLPPMultinomialNBOld::score() {
|
|
|
|
MLPPUtilities util;
|
|
|
|
return util.performance(y_hat, outputSet);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPMultinomialNBOld::computeTheta() {
|
|
|
|
// Resizing theta for the sake of ease & proper access of the elements.
|
|
|
|
theta.resize(class_num);
|
|
|
|
|
|
|
|
// Setting all values in the hasmap by default to 0.
|
|
|
|
for (int i = class_num - 1; i >= 0; i--) {
|
|
|
|
for (uint32_t j = 0; j < vocab.size(); j++) {
|
|
|
|
theta[i][vocab[j]] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < inputSet.size(); i++) {
|
|
|
|
for (uint32_t j = 0; j < inputSet[0].size(); j++) {
|
|
|
|
theta[outputSet[i]][inputSet[i][j]]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t i = 0; i < theta.size(); i++) {
|
|
|
|
for (uint32_t j = 0; j < theta[i].size(); j++) {
|
|
|
|
theta[i][j] /= priors[i] * y_hat.size();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLPPMultinomialNBOld::Evaluate() {
|
2023-04-22 17:17:58 +02:00
|
|
|
MLPPLinAlgOld alg;
|
2023-02-11 00:46:43 +01:00
|
|
|
for (uint32_t i = 0; i < outputSet.size(); i++) {
|
|
|
|
// Pr(B | A) * Pr(A)
|
|
|
|
real_t score[class_num];
|
|
|
|
|
|
|
|
// Easy computation of priors, i.e. Pr(C_k)
|
|
|
|
priors.resize(class_num);
|
|
|
|
for (uint32_t ii = 0; ii < outputSet.size(); ii++) {
|
|
|
|
priors[int(outputSet[ii])]++;
|
|
|
|
}
|
|
|
|
priors = alg.scalarMultiply(real_t(1) / real_t(outputSet.size()), priors);
|
|
|
|
|
|
|
|
// Evaluating Theta...
|
|
|
|
computeTheta();
|
|
|
|
|
|
|
|
for (uint32_t j = 0; j < inputSet.size(); j++) {
|
|
|
|
for (uint32_t k = 0; k < vocab.size(); k++) {
|
|
|
|
if (inputSet[i][j] == vocab[k]) {
|
|
|
|
for (int p = class_num - 1; p >= 0; p--) {
|
|
|
|
score[p] += std::log(theta[i][vocab[k]]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint32_t ii = 0; ii < priors.size(); ii++) {
|
|
|
|
score[ii] += std::log(priors[ii]);
|
|
|
|
score[ii] = exp(score[ii]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int ii = 0; ii < 2; ii++) {
|
|
|
|
std::cout << score[ii] << std::endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assigning the traning example's y_hat to a class
|
|
|
|
y_hat[i] = std::distance(score, std::max_element(score, score + sizeof(score) / sizeof(real_t)));
|
|
|
|
}
|
|
|
|
}
|