pmlpp/mlpp/output_layer/output_layer_old.cpp

136 lines
4.6 KiB
C++
Raw Normal View History

//
// OutputLayer.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "output_layer_old.h"
#include "../lin_alg/lin_alg.h"
#include "../utilities/utilities.h"
#include <iostream>
#include <random>
MLPPOldOutputLayer::MLPPOldOutputLayer(int p_n_hidden, std::string p_activation, std::string p_cost, std::vector<std::vector<real_t>> p_input, std::string p_weightInit, std::string p_reg, real_t p_lambda, real_t p_alpha) {
n_hidden = p_n_hidden;
activation = p_activation;
cost = p_cost;
input = p_input;
weightInit = p_weightInit;
reg = p_reg;
lambda = p_lambda;
alpha = p_alpha;
weights = MLPPUtilities::weightInitialization(n_hidden, weightInit);
bias = MLPPUtilities::biasInitialization();
activation_map["Linear"] = &MLPPActivation::linear;
activationTest_map["Linear"] = &MLPPActivation::linear;
activation_map["Sigmoid"] = &MLPPActivation::sigmoid;
activationTest_map["Sigmoid"] = &MLPPActivation::sigmoid;
activation_map["Swish"] = &MLPPActivation::swish;
activationTest_map["Swish"] = &MLPPActivation::swish;
activation_map["Mish"] = &MLPPActivation::mish;
activationTest_map["Mish"] = &MLPPActivation::mish;
activation_map["SinC"] = &MLPPActivation::sinc;
activationTest_map["SinC"] = &MLPPActivation::sinc;
activation_map["Softplus"] = &MLPPActivation::softplus;
activationTest_map["Softplus"] = &MLPPActivation::softplus;
activation_map["Softsign"] = &MLPPActivation::softsign;
activationTest_map["Softsign"] = &MLPPActivation::softsign;
activation_map["CLogLog"] = &MLPPActivation::cloglog;
activationTest_map["CLogLog"] = &MLPPActivation::cloglog;
activation_map["Logit"] = &MLPPActivation::logit;
activationTest_map["Logit"] = &MLPPActivation::logit;
activation_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
activationTest_map["GaussianCDF"] = &MLPPActivation::gaussianCDF;
activation_map["RELU"] = &MLPPActivation::RELU;
activationTest_map["RELU"] = &MLPPActivation::RELU;
activation_map["GELU"] = &MLPPActivation::GELU;
activationTest_map["GELU"] = &MLPPActivation::GELU;
activation_map["Sign"] = &MLPPActivation::sign;
activationTest_map["Sign"] = &MLPPActivation::sign;
activation_map["UnitStep"] = &MLPPActivation::unitStep;
activationTest_map["UnitStep"] = &MLPPActivation::unitStep;
activation_map["Sinh"] = &MLPPActivation::sinh;
activationTest_map["Sinh"] = &MLPPActivation::sinh;
activation_map["Cosh"] = &MLPPActivation::cosh;
activationTest_map["Cosh"] = &MLPPActivation::cosh;
activation_map["Tanh"] = &MLPPActivation::tanh;
activationTest_map["Tanh"] = &MLPPActivation::tanh;
activation_map["Csch"] = &MLPPActivation::csch;
activationTest_map["Csch"] = &MLPPActivation::csch;
activation_map["Sech"] = &MLPPActivation::sech;
activationTest_map["Sech"] = &MLPPActivation::sech;
activation_map["Coth"] = &MLPPActivation::coth;
activationTest_map["Coth"] = &MLPPActivation::coth;
activation_map["Arsinh"] = &MLPPActivation::arsinh;
activationTest_map["Arsinh"] = &MLPPActivation::arsinh;
activation_map["Arcosh"] = &MLPPActivation::arcosh;
activationTest_map["Arcosh"] = &MLPPActivation::arcosh;
activation_map["Artanh"] = &MLPPActivation::artanh;
activationTest_map["Artanh"] = &MLPPActivation::artanh;
activation_map["Arcsch"] = &MLPPActivation::arcsch;
activationTest_map["Arcsch"] = &MLPPActivation::arcsch;
activation_map["Arsech"] = &MLPPActivation::arsech;
activationTest_map["Arsech"] = &MLPPActivation::arsech;
activation_map["Arcoth"] = &MLPPActivation::arcoth;
activationTest_map["Arcoth"] = &MLPPActivation::arcoth;
costDeriv_map["MSE"] = &MLPPCost::MSEDeriv;
cost_map["MSE"] = &MLPPCost::MSE;
costDeriv_map["RMSE"] = &MLPPCost::RMSEDeriv;
cost_map["RMSE"] = &MLPPCost::RMSE;
costDeriv_map["MAE"] = &MLPPCost::MAEDeriv;
cost_map["MAE"] = &MLPPCost::MAE;
costDeriv_map["MBE"] = &MLPPCost::MBEDeriv;
cost_map["MBE"] = &MLPPCost::MBE;
costDeriv_map["LogLoss"] = &MLPPCost::LogLossDeriv;
cost_map["LogLoss"] = &MLPPCost::LogLoss;
costDeriv_map["CrossEntropy"] = &MLPPCost::CrossEntropyDeriv;
cost_map["CrossEntropy"] = &MLPPCost::CrossEntropy;
costDeriv_map["HingeLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["HingeLoss"] = &MLPPCost::HingeLoss;
costDeriv_map["WassersteinLoss"] = &MLPPCost::HingeLossDeriv;
cost_map["WassersteinLoss"] = &MLPPCost::HingeLoss;
}
void MLPPOldOutputLayer::forwardPass() {
MLPPLinAlg alg;
MLPPActivation avn;
z = alg.scalarAdd(bias, alg.mat_vec_mult(input, weights));
a = (avn.*activation_map[activation])(z, false);
}
void MLPPOldOutputLayer::Test(std::vector<real_t> x) {
MLPPLinAlg alg;
MLPPActivation avn;
z_test = alg.dot(weights, x) + bias;
a_test = (avn.*activationTest_map[activation])(z_test, false);
}