pmlpp/mlpp/mann/mann.h

75 lines
2.0 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_MANN_H
#define MLPP_MANN_H
//
// MANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-02-11 09:53:16 +01:00
#include "core/object/reference.h"
#include "../regularization/reg.h"
#include "../lin_alg/mlpp_matrix.h"
#include "../lin_alg/mlpp_vector.h"
2023-01-24 18:12:23 +01:00
#include "../hidden_layer/hidden_layer.h"
#include "../multi_output_layer/multi_output_layer.h"
2023-02-11 09:53:16 +01:00
class MLPPMANN : public Reference {
GDCLASS(MLPPMANN, Reference);
2023-01-24 19:00:54 +01:00
public:
2023-02-11 09:53:16 +01:00
/*
Ref<MLPPMatrix> get_input_set();
void set_input_set(const Ref<MLPPMatrix> &val);
Ref<MLPPMatrix> get_output_set();
void set_output_set(const Ref<MLPPMatrix> &val);
*/
2023-02-17 18:46:27 +01:00
Ref<MLPPMatrix> model_set_test(const Ref<MLPPMatrix> &X);
Ref<MLPPVector> model_test(const Ref<MLPPVector> &x);
2023-02-11 09:53:16 +01:00
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
2023-01-27 13:01:16 +01:00
real_t score();
2023-01-24 19:00:54 +01:00
2023-02-17 18:46:27 +01:00
void save(const String &file_name);
2023-02-11 09:53:16 +01:00
2023-02-17 18:46:27 +01:00
void add_layer(int n_hidden, MLPPActivation::ActivationFunction activation, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(MLPPActivation::ActivationFunction activation, MLPPCost::CostTypes loss, MLPPUtilities::WeightDistributionType weight_init = MLPPUtilities::WEIGHT_DISTRIBUTION_TYPE_DEFAULT, MLPPReg::RegularizationType reg = MLPPReg::REGULARIZATION_TYPE_NONE, real_t lambda = 0.5, real_t alpha = 0.5);
2023-02-11 09:53:16 +01:00
bool is_initialized();
void initialize();
2023-02-17 18:46:27 +01:00
MLPPMANN(const Ref<MLPPMatrix> &p_input_set, const Ref<MLPPMatrix> &p_output_set);
2023-02-11 09:53:16 +01:00
MLPPMANN();
~MLPPMANN();
2023-01-24 19:00:54 +01:00
private:
2023-02-17 18:46:27 +01:00
real_t cost(const Ref<MLPPMatrix> &y_hat, const Ref<MLPPMatrix> &y);
2023-02-11 09:53:16 +01:00
void forward_pass();
static void _bind_methods();
2023-02-17 18:46:27 +01:00
Ref<MLPPMatrix> _input_set;
Ref<MLPPMatrix> _output_set;
Ref<MLPPMatrix> _y_hat;
2023-01-24 19:00:54 +01:00
2023-02-17 18:46:27 +01:00
Vector<Ref<MLPPHiddenLayer>> _network;
Ref<MLPPMultiOutputLayer> _output_layer;
2023-01-24 19:00:54 +01:00
2023-02-11 09:53:16 +01:00
int _n;
int _k;
int _n_output;
2023-01-24 19:00:54 +01:00
2023-02-11 09:53:16 +01:00
bool _initialized;
2023-01-24 19:00:54 +01:00
};
2023-01-24 19:20:18 +01:00
#endif /* MANN_hpp */