pmlpp/mlpp/ann/ann.h

84 lines
3.2 KiB
C
Raw Normal View History

2023-01-24 18:57:18 +01:00
#ifndef MLPP_ANN_H
#define MLPP_ANN_H
//
// ANN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
2023-01-27 13:01:16 +01:00
#include "core/math/math_defs.h"
2023-02-12 18:35:53 +01:00
#include "core/object/reference.h"
#include "../hidden_layer/hidden_layer.h"
#include "../output_layer/output_layer.h"
#include "../hidden_layer/hidden_layer_old.h"
#include "../output_layer/output_layer_old.h"
#include <string>
2023-01-24 19:00:54 +01:00
#include <tuple>
#include <vector>
2023-02-12 18:35:53 +01:00
class MLPPANN : public Reference {
GDCLASS(MLPPANN, Reference);
2023-01-24 19:00:54 +01:00
public:
2023-02-12 15:07:26 +01:00
std::vector<real_t> model_set_test(std::vector<std::vector<real_t>> X);
real_t model_test(std::vector<real_t> x);
void gradient_descent(real_t learning_rate, int max_epoch, bool ui = false);
void sgd(real_t learning_rate, int max_epoch, bool ui = false);
void mbgd(real_t learning_rate, int max_epoch, int mini_batch_size, bool ui = false);
void momentum(real_t learning_rate, int max_epoch, int mini_batch_size, real_t gamma, bool nag, bool ui = false);
void adagrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t e, bool ui = false);
void adadelta(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t e, bool ui = false);
void adam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void adamax(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void nadam(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
void amsgrad(real_t learning_rate, int max_epoch, int mini_batch_size, real_t b1, real_t b2, real_t e, bool ui = false);
2023-01-27 13:01:16 +01:00
real_t score();
2023-02-12 15:07:26 +01:00
void save(std::string file_name);
void set_learning_rate_scheduler(std::string type, real_t decay_constant);
void set_learning_rate_scheduler_drop(std::string type, real_t decay_constant, real_t drop_rate);
2023-01-24 19:00:54 +01:00
2023-02-12 15:07:26 +01:00
void add_layer(int n_hidden, std::string activation, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
void add_output_layer(std::string activation, std::string loss, std::string weight_init = "Default", std::string reg = "None", real_t lambda = 0.5, real_t alpha = 0.5);
2023-01-24 19:00:54 +01:00
2023-02-12 15:07:26 +01:00
MLPPANN(std::vector<std::vector<real_t>> inputSet, std::vector<real_t> outputSet);
MLPPANN();
~MLPPANN();
2023-01-24 19:00:54 +01:00
2023-02-12 18:35:53 +01:00
protected:
2023-02-12 15:07:26 +01:00
real_t apply_learning_rate_scheduler(real_t learningRate, real_t decayConstant, real_t epoch, real_t dropRate);
2023-01-24 19:00:54 +01:00
2023-02-12 15:07:26 +01:00
real_t cost(std::vector<real_t> y_hat, std::vector<real_t> y);
2023-01-24 19:00:54 +01:00
2023-02-12 15:07:26 +01:00
void forward_pass();
void update_parameters(std::vector<std::vector<std::vector<real_t>>> hiddenLayerUpdations, std::vector<real_t> outputLayerUpdation, real_t learning_rate);
std::tuple<std::vector<std::vector<std::vector<real_t>>>, std::vector<real_t>> compute_gradients(std::vector<real_t> y_hat, std::vector<real_t> outputSet);
2023-01-24 19:00:54 +01:00
2023-02-12 15:07:26 +01:00
void print_ui(int epoch, real_t cost_prev, std::vector<real_t> y_hat, std::vector<real_t> outputSet);
2023-01-24 19:00:54 +01:00
2023-02-12 18:35:53 +01:00
static void _bind_methods();
2023-01-27 13:01:16 +01:00
std::vector<std::vector<real_t>> inputSet;
std::vector<real_t> outputSet;
std::vector<real_t> y_hat;
2023-01-24 19:00:54 +01:00
std::vector<MLPPOldHiddenLayer> network;
MLPPOldOutputLayer *outputLayer;
2023-01-24 19:00:54 +01:00
int n;
int k;
std::string lrScheduler;
2023-01-27 13:01:16 +01:00
real_t decayConstant;
real_t dropRate;
2023-01-24 19:00:54 +01:00
};
#endif /* ANN_hpp */