2023-01-23 21:13:26 +01:00
|
|
|
//
|
|
|
|
// ProbitReg.cpp
|
|
|
|
//
|
|
|
|
// Created by Marc Melikyan on 10/2/20.
|
|
|
|
//
|
|
|
|
|
2023-01-24 18:12:23 +01:00
|
|
|
#include "probit_reg.h"
|
|
|
|
#include "../activation/activation.h"
|
|
|
|
#include "../lin_alg/lin_alg.h"
|
|
|
|
#include "../regularization/reg.h"
|
|
|
|
#include "../utilities/utilities.h"
|
|
|
|
#include "../cost/cost.h"
|
2023-01-23 21:13:26 +01:00
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <random>
|
|
|
|
|
|
|
|
namespace MLPP{
|
|
|
|
ProbitReg::ProbitReg(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet, std::string reg, double lambda, double alpha)
|
|
|
|
: inputSet(inputSet), outputSet(outputSet), n(inputSet.size()), k(inputSet[0].size()), reg(reg), lambda(lambda), alpha(alpha)
|
|
|
|
{
|
|
|
|
y_hat.resize(n);
|
|
|
|
weights = Utilities::weightInitialization(k);
|
|
|
|
bias = Utilities::biasInitialization();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> ProbitReg::modelSetTest(std::vector<std::vector<double>> X){
|
|
|
|
return Evaluate(X);
|
|
|
|
}
|
|
|
|
|
|
|
|
double ProbitReg::modelTest(std::vector<double> x){
|
|
|
|
return Evaluate(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ProbitReg::gradientDescent(double learning_rate, int max_epoch, bool UI){
|
|
|
|
Activation avn;
|
|
|
|
LinAlg alg;
|
|
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
while(true){
|
|
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputSet);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
if(UI) {
|
|
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
|
|
Utilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ProbitReg::MLE(double learning_rate, int max_epoch, bool UI){
|
|
|
|
Activation avn;
|
|
|
|
LinAlg alg;
|
|
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
while(true){
|
|
|
|
cost_prev = Cost(y_hat, outputSet);
|
|
|
|
|
|
|
|
std::vector<double> error = alg.subtraction(outputSet, y_hat);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.addition(weights, alg.scalarMultiply(learning_rate/n, alg.mat_vec_mult(alg.transpose(inputSet), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias += learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / n;
|
|
|
|
forwardPass();
|
|
|
|
|
|
|
|
if(UI) {
|
|
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
|
|
|
|
Utilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void ProbitReg::SGD(double learning_rate, int max_epoch, bool UI){
|
|
|
|
// NOTE: ∂y_hat/∂z is sparse
|
|
|
|
Activation avn;
|
|
|
|
LinAlg alg;
|
|
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
|
|
|
|
while(true){
|
|
|
|
std::random_device rd;
|
|
|
|
std::default_random_engine generator(rd());
|
|
|
|
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
|
|
|
int outputIndex = distribution(generator);
|
|
|
|
|
|
|
|
double y_hat = Evaluate(inputSet[outputIndex]);
|
|
|
|
double z = propagate(inputSet[outputIndex]);
|
|
|
|
cost_prev = Cost({y_hat}, {outputSet[outputIndex]});
|
|
|
|
|
|
|
|
double error = y_hat - outputSet[outputIndex];
|
|
|
|
|
|
|
|
// Weight Updation
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2)), inputSet[outputIndex]));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Bias updation
|
|
|
|
bias -= learning_rate * error * ((1 / sqrt(2 * M_PI)) * exp(-z * z / 2));
|
|
|
|
|
|
|
|
y_hat = Evaluate({inputSet[outputIndex]});
|
|
|
|
|
|
|
|
if(UI) {
|
|
|
|
Utilities::CostInfo(epoch, cost_prev, Cost({y_hat}, {outputSet[outputIndex]}));
|
|
|
|
Utilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
}
|
|
|
|
|
|
|
|
void ProbitReg::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
|
|
|
Activation avn;
|
|
|
|
LinAlg alg;
|
|
|
|
Reg regularization;
|
|
|
|
double cost_prev = 0;
|
|
|
|
int epoch = 1;
|
|
|
|
|
|
|
|
// Creating the mini-batches
|
|
|
|
int n_mini_batch = n/mini_batch_size;
|
|
|
|
auto [inputMiniBatches, outputMiniBatches] = Utilities::createMiniBatches(inputSet, outputSet, n_mini_batch);
|
|
|
|
|
|
|
|
// Creating the mini-batches
|
|
|
|
for(int i = 0; i < n_mini_batch; i++){
|
|
|
|
std::vector<std::vector<double>> currentInputSet;
|
|
|
|
std::vector<double> currentOutputSet;
|
|
|
|
for(int j = 0; j < n/n_mini_batch; j++){
|
|
|
|
currentInputSet.push_back(inputSet[n/n_mini_batch * i + j]);
|
|
|
|
currentOutputSet.push_back(outputSet[n/n_mini_batch * i + j]);
|
|
|
|
}
|
|
|
|
inputMiniBatches.push_back(currentInputSet);
|
|
|
|
outputMiniBatches.push_back(currentOutputSet);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(double(n)/double(n_mini_batch) - int(n/n_mini_batch) != 0){
|
|
|
|
for(int i = 0; i < n - n/n_mini_batch * n_mini_batch; i++){
|
|
|
|
inputMiniBatches[n_mini_batch - 1].push_back(inputSet[n/n_mini_batch * n_mini_batch + i]);
|
|
|
|
outputMiniBatches[n_mini_batch - 1].push_back(outputSet[n/n_mini_batch * n_mini_batch + i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
while(true){
|
|
|
|
for(int i = 0; i < n_mini_batch; i++){
|
|
|
|
std::vector<double> y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
std::vector<double> z = propagate(inputMiniBatches[i]);
|
|
|
|
cost_prev = Cost(y_hat, outputMiniBatches[i]);
|
|
|
|
|
|
|
|
std::vector<double> error = alg.subtraction(y_hat, outputMiniBatches[i]);
|
|
|
|
|
|
|
|
// Calculating the weight gradients
|
|
|
|
weights = alg.subtraction(weights, alg.scalarMultiply(learning_rate/outputMiniBatches.size(), alg.mat_vec_mult(alg.transpose(inputMiniBatches[i]), alg.hadamard_product(error, avn.gaussianCDF(z, 1)))));
|
|
|
|
weights = regularization.regWeights(weights, lambda, alpha, reg);
|
|
|
|
|
|
|
|
// Calculating the bias gradients
|
|
|
|
bias -= learning_rate * alg.sum_elements(alg.hadamard_product(error, avn.gaussianCDF(z, 1))) / outputMiniBatches.size();
|
|
|
|
y_hat = Evaluate(inputMiniBatches[i]);
|
|
|
|
|
|
|
|
if(UI) {
|
|
|
|
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputMiniBatches[i]));
|
|
|
|
Utilities::UI(weights, bias);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
epoch++;
|
|
|
|
if(epoch > max_epoch) { break; }
|
|
|
|
}
|
|
|
|
forwardPass();
|
|
|
|
}
|
|
|
|
|
|
|
|
double ProbitReg::score(){
|
|
|
|
Utilities util;
|
|
|
|
return util.performance(y_hat, outputSet);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ProbitReg::save(std::string fileName){
|
|
|
|
Utilities util;
|
|
|
|
util.saveParameters(fileName, weights, bias);
|
|
|
|
}
|
|
|
|
|
|
|
|
double ProbitReg::Cost(std::vector <double> y_hat, std::vector<double> y){
|
|
|
|
Reg regularization;
|
|
|
|
class Cost cost;
|
|
|
|
return cost.MSE(y_hat, y) + regularization.regTerm(weights, lambda, alpha, reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double> ProbitReg::Evaluate(std::vector<std::vector<double>> X){
|
|
|
|
LinAlg alg;
|
|
|
|
Activation avn;
|
|
|
|
return avn.gaussianCDF(alg.scalarAdd(bias, alg.mat_vec_mult(X, weights)));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<double>ProbitReg::propagate(std::vector<std::vector<double>> X){
|
|
|
|
LinAlg alg;
|
|
|
|
return alg.scalarAdd(bias, alg.mat_vec_mult(X, weights));
|
|
|
|
}
|
|
|
|
|
|
|
|
double ProbitReg::Evaluate(std::vector<double> x){
|
|
|
|
LinAlg alg;
|
|
|
|
Activation avn;
|
|
|
|
return avn.gaussianCDF(alg.dot(weights, x) + bias);
|
|
|
|
}
|
|
|
|
|
|
|
|
double ProbitReg::propagate(std::vector<double> x){
|
|
|
|
LinAlg alg;
|
|
|
|
return alg.dot(weights, x) + bias;
|
|
|
|
}
|
|
|
|
|
|
|
|
// gaussianCDF ( wTx + b )
|
|
|
|
void ProbitReg::forwardPass(){
|
|
|
|
LinAlg alg;
|
|
|
|
Activation avn;
|
|
|
|
|
|
|
|
z = propagate(inputSet);
|
|
|
|
y_hat = avn.gaussianCDF(z);
|
|
|
|
}
|
|
|
|
}
|